
Sismic Documentation
Release 1.1.2

Alexandre Decan

Oct 21, 2018

Overview

1 About 3

2 Features 5
2.1 Installation . 6
2.2 Statecharts definition . 6
2.3 Statecharts execution . 14
2.4 Include code in statecharts . 20
2.5 Design by Contract for statecharts . 25
2.6 Monitoring properties . 28
2.7 Behavior-Driven Development . 31
2.8 Dealing with time . 39
2.9 Integrate statecharts into your code . 42
2.10 Communication between statecharts . 52
2.11 Extensions for Sismic . 55
2.12 Credits . 55
2.13 Changelog . 56
2.14 API Reference . 65

3 Credits 89

Python Module Index 91

i

ii

Sismic Documentation, Release 1.1.2

Overview 1

https://travis-ci.org/AlexandreDecan/sismic
https://coveralls.io/github/AlexandreDecan/sismic?branch=master
https://www.codacy.com/app/alexandre-decan/sismic
https://pypi.python.org/pypi/sismic
https://sismic.readthedocs.io/

Sismic Documentation, Release 1.1.2

2 Overview

CHAPTER 1

About

Sismic is a recursive acronym that stands for Sismic Interactive Statechart Model Interpreter and Checker.

Statecharts are a well-known visual modeling language for representing the executable behavior of complex reactive
event-based systems. Sismic library for Python (version 3.4 or higher) provides a set of tools to define, validate,
simulate, execute and test statecharts.

Sismic is mainly developed by Alexandre Decan at the University of Mons and released publicly under the GNU
Lesser General Public Licence version 3.0 (LGPLv3).

3

http://www.umons.ac.be
http://www.gnu.org/licenses/lgpl-3.0.html
http://www.gnu.org/licenses/lgpl-3.0.html

Sismic Documentation, Release 1.1.2

4 Chapter 1. About

CHAPTER 2

Features

Sismic provides the following features:

• An easy way to define and to import statecharts, based on the human-friendly YAML markup language

• A statechart interpreter offering a discrete, step-by-step, and fully observable simulation engine

• Built-in support for expressing actions and guards using regular Python code, can be easily extended to other
programming languages

• A design-by-contract approach for statecharts: contracts can be specified to express invariants, pre- and post-
conditions on states and transitions

• Runtime checking of behavioral properties expressed as statecharts

• Built-in support for behavior-driven development

• Synchronous and asynchronous simulation, in real time or simulated time

• Support for communication between statecharts and co-simulation

• Statechart visualization using PlantUML

Some experimental features are also available as feature branches.

The semantics of the statechart interpreter is based on the specification of the SCXML semantics (with a few excep-
tions), but can be easily tuned to other semantics. Sismic statecharts provides full support for the majority of the UML
2 statechart concepts:

• simple states, composite states, orthogonal (parallel) states, initial and final states, shallow and deep history
states

• state transitions, guarded transitions, automatic (eventless) transitions, internal transitions

• statechart variables and their initialisation

• state entry and exit actions, transition actions

• internal and external parametrized events

5

http://www.plantuml.com/plantuml
https://github.com/AlexandreDecan/sismic/issues?q=is%3Aopen+is%3Aissue+label%3A%22feature+branch%22

Sismic Documentation, Release 1.1.2

2.1 Installation

2.1.1 Using pip

Sismic requires Python >=3.4, and can be installed using pip as usual: pip install sismic. This will install
the latest stable version. Starting from release 1.0.0, Sismic adheres to a semantic versioning scheme.

You can isolate Sismic installation by using virtual environments:

1. Get the tool to create virtual environments: pip install virtualenv

2. Create the environment: virtualenv -p python3.4 env

3. Jump into: source env/bin/activate

4. Install Sismic: pip install sismic

The development version can also be installed directly from its git repository: pip install git+git://
github.com/AlexandreDecan/sismic.git

2.1.2 From GitHub

You can also install Sismic from its repository by cloning it.

1. Get the tool to create virtual environments: pip install virtualenv

2. Create the environment: virtualenv -p python3.4 env

3. Jump into: source env/bin/activate

4. Clone the repository: git clone https://github.com/AlexandreDecan/sismic

5. Install Sismic: pip install . or pip install -e . (editable mode)

6. Install test dependencies: pip install -r requirements.txt

Sismic is now available from the root directory. Its code is in the sismic repository. The documentation can be built
from the docs directory using make html.

Tests are available both for the code and the documentation:

• make doctest in the docs directory (documentation tests)

• python -m pytest tests/ from the root directory (code tests)

2.2 Statecharts definition

2.2.1 About statecharts

Statecharts are a well-known visual language for modeling the executable behavior of complex reactive event-based
systems. They were invented in the 1980s by David Harel, and have gained a more widespread adoption since they
became part of the UML modeling standard.

Statecharts offer more sophisticated modeling concepts than the more classical state diagrams of finite state machines.
For example, they support hierarchical composition of states, orthogonal regions to express parallel execution, guarded
transitions, and actions on transitions or states. Different flavours of executable semantics for statecharts have been
proposed in the literature and in existing tools.

6 Chapter 2. Features

https://semver.org

Sismic Documentation, Release 1.1.2

2.2.2 Defining statecharts in YAML

Because Sismic is supposed to be independent of a particular visual modeling tool, and easy to integrate in other
programs without requiring the implementation of a visual notation, statecharts are expressed using YAML, a human-
friendly textual notation (the alternative of using something like SCXML was discarded because its notation is too
verbose and not really “human-readable”).

This section explains how the elements that compose a valid statechart in Sismic can be defined using YAML. If you
are not familiar with YAML, have a look at YAML official documentation.

See also:

While statecharts can be defined in YAML, they can be defined in pure Python too. Moreover, Statechart instances
exhibit several methods to query and manipulate statecharts (e.g.: rename_state(), rotate_transition(),
copy_from_statechart(), etc.). Consider looking at Statechart API for more information.

See also:

Experimental import/export support for AMOLA specifications of statecharts is available as an extension of Sismic.
AMOLA is notably used in ASEME IDE, which can be used to graphically create, edit and visualize statecharts. More
information on Extensions for Sismic.

Statechart

The root of the YAML file must declare a statechart:

statechart:
name: Name of the statechart
description: Description of the statechart
root state:
[...]

The name and the root state keys are mandatory, the description is optional. The root state key contains a state
definition (see below). If specific code needs to be executed during initialization of the statechart, this can be specified
using preamble. In this example, the code is written in Python.

statechart:
name: statechart containing initialization code
preamble: x = 1

Code can be written on multiple lines as follows:

preamble: |
x = 1
y = 2

States

A statechart must declare a root state. Each state consist of at least a mandatory name. Depending on the state type,
other optional fields can be declared.

statechart:
name: with state
root state:
name: root

2.2. Statecharts definition 7

http://www.yaml.org/spec/1.2/spec.html
http://aseme.tuc.gr/

Sismic Documentation, Release 1.1.2

Entry and exit actions

For each declared state, the optional on entry and on exit fields can be used to specify the code that has to be executed
when entering and leaving the state:

- name: s1
on entry: x += 1
on exit: |
x -= 1
y = 2

Final states

A final state can be declared by specifying type: final:

- name: s1
type: final

Shallow and deep history states

History states can be declared as follows:

• type: shallow history to declare a shallow history state;

• type: deep history to declare a deep history state.

- name: history state
type: shallow history

A history state can optionally declare a default initial memory using memory. Importantly, the memory value must
refer to a parent’s substate.

- name: history state
type: deep history
memory: s1

See also:

We refer to the semantics of UML for the difference between both types of histories.

Composite states

A state that is neither a final state nor a history state can contain nested states. Such a state is commonly called a
composite state.

- name: composite state
states:
- name: nested state 1
- name: nested state 2

states:
- name: nested state 2a

A composite state can define its initial state using initial.

8 Chapter 2. Features

Sismic Documentation, Release 1.1.2

- name: composite state
initial: nested state 1
states:
- name: nested state 1
- name: nested state 2

initial: nested state a2
states:

- name: nested state 2a

Note: Unlike UML, but similarly to SCXML, Sismic does not explicitly represent the concept of region. A region is
essentially a logical set of nested states, and thus can be viewed as a specialization of a composite state.

Orthogonal states

Orthogonal states (sometimes referred as parallel states) allow to specify multiple nested statecharts running in par-
allel. They must declare their nested states using parallel states instead of states.

statechart:
name: statechart containing multiple orthogonal states
initial state:
name: processes
parallel states:

- name: process 1
- name: process 2

Transitions

Transitions between states, compound states and parallel states can be declared with the transitions field. Transitions
typically specify a target state using the target field:

- name: state with transitions
transitions:
- target: other state

Other optional fields can be specified for a transition: a guard (a Boolean expression that will be evaluated to determine
if the transition can be followed), an event (name of the event that will trigger the transition), an action (code that will
be executed if the transition is processed). Here is a full example of a transition specification:

- name: state with an outgoing transition
transitions:
- target: some other state

event: click
guard: x > 1
action: print('Hello World!')

One type of transition, called an internal transition, does not require to declare a target. Instead, it must either define
an event or define a guard to determine when it should become active (otherwise, infinite loops would occur during
simulation or execution).

Notice that such a transition does not trigger the on entry and on exit of its state, and can thus be used to model an
internal action.

2.2. Statecharts definition 9

Sismic Documentation, Release 1.1.2

Statechart examples

Elevator

The Elevator statechart is one of the running examples in this documentation. Its visual description generated from
Sismic using PlantUML looks as follows:

The corresponding YAML description is given below.

statechart:
name: Elevator
preamble: |
current = 0
destination = 0
doors_open = True

root state:
name: active
parallel states:

- name: movingElevator
initial: doorsOpen
states:
- name: doorsOpen

transitions:
- target: doorsClosed
guard: destination != current
action: doors_open = False

- target: doorsClosed
guard: after(10) and current > 0
action: |
destination = 0
doors_open = False

- name: doorsClosed
transitions:

(continues on next page)

10 Chapter 2. Features

Sismic Documentation, Release 1.1.2

(continued from previous page)

- target: movingUp
guard: destination > current

- target: movingDown
guard: destination < current and destination >= 0

- name: moving
transitions:
- target: doorsOpen
guard: destination == current
action: doors_open = True

states:
- name: movingUp
on entry: current = current + 1
transitions:
- target: movingUp
guard: destination > current

- name: movingDown
on entry: current = current - 1
transitions:
- target: movingDown
guard: destination < current

- name: floorListener
initial: floorSelecting
states:
- name: floorSelecting

transitions:
- target: floorSelecting
event: floorSelected
action: destination = event.floor

Other examples

Some other examples can be found in the Git repository of the project, in docs/examples.

2.2.3 Importing and validating statecharts

The Statechart class provides several methods to construct, to query and to manipulate a statechart. A YAML
definition of a statechart can be easily imported to a Statechart instance. The module sismic.io provides
a convenient loader import_from_yaml() which takes a textual YAML definition of a statechart and returns a
Statechart instance.

sismic.io.import_from_yaml(text=None, filepath=None, *, ignore_schema=False, ig-
nore_validation=False)

Import a statechart from a YAML representation (first argument) or a YAML file (filepath argument).

Unless specified, the structure contained in the YAML is validated against a predefined schema (see sis-
mic.io.SCHEMA), and the resulting statechart is validated using its validate() method.

Parameters

• text (Optional[Iterable[str]]) – A YAML text. If not provided, filepath argument
has to be provided.

• filepath (Optional[str]) – A path to a YAML file.

• ignore_schema (bool) – set to True to disable yaml validation.

2.2. Statecharts definition 11

https://github.com/AlexandreDecan/sismic/tree/master/docs/examples
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool

Sismic Documentation, Release 1.1.2

• ignore_validation (bool) – set to True to disable statechart validation.

Return type Statechart

Returns a Statechart instance

For example:

from sismic.io import import_from_yaml
from sismic.model import Statechart

with open('examples/elevator/elevator.yaml') as f:
statechart = import_from_yaml(f)
assert isinstance(statechart, Statechart)

The function also supports importing from a given filepath:

statechart = import_from_yaml(filepath='examples/elevator/elevator.yaml')
assert isinstance(statechart, Statechart)

The parser performs several checks using statechart’s validate method. It also does an automatic validation against
some kind of schema to prevent erroneous keys. See schema library for more information about the semantics.

class SCHEMA:
contract = {schema.Or('before', 'after', 'always'): schema.Use(str)}

transition = {
schema.Optional('target'): schema.Use(str),
schema.Optional('event'): schema.Use(str),
schema.Optional('guard'): schema.Use(str),
schema.Optional('action'): schema.Use(str),
schema.Optional('contract'): [contract],

}

state = dict() # type: ignore
state.update({

'name': schema.Use(str),
schema.Optional('type'): schema.Or('final', 'shallow history', 'deep history

→˓'),
schema.Optional('on entry'): schema.Use(str),
schema.Optional('on exit'): schema.Use(str),
schema.Optional('transitions'): [transition],
schema.Optional('contract'): [contract],
schema.Optional('initial'): schema.Use(str),
schema.Optional('parallel states'): [state],
schema.Optional('states'): [state],

})

statechart = {
'statechart': {

'name': schema.Use(str),
schema.Optional('description'): schema.Use(str),
schema.Optional('preamble'): schema.Use(str),
'root state': state,

}
}

See also:

Consider having a look at the feature branches of Sismic repository to get more information about the various statechart

12 Chapter 2. Features

https://docs.python.org/3.4/library/functions.html#bool
https://pypi.python.org/pypi/schema
https://github.com/AlexandreDecan/sismic/issues?q=is%3Aopen+is%3Aissue+label%3A%22feature+branch%22

Sismic Documentation, Release 1.1.2

formats that are currently (experimentally) supported but not yet released in Sismic.

2.2.4 Visualising statecharts

Sismic is not bundle with any graphical tool that can be used to edit or even view a statechart. Module sismic.io
contains routines that can be used to (import and) export statecharts to other format, some of them being used by
third-party tools that support visualising (or editing) statecharts.

Notably, module sismic.io contains a function export_to_plantuml() that export a given statechart to
PlantUML, a tool based on graphviz that can automatically render statecharts (to some extent). An online version of
PlantUML can be found here.

For example, the elevator statechart can be exported to the following PlantUML file, which in turns can be used to
generate the previously given representation of the elevator.

@startuml
title Elevator
state "active" as active {
state "floorListener" as floorListener {
[*] -right-> floorSelecting
state "floorSelecting" as floorSelecting {

floorSelecting --> floorSelecting : floorSelected / destination = event.floor
}

}
--
state "movingElevator" as movingElevator {
[*] -right-> doorsOpen
state "moving" as moving {

moving --> doorsOpen : [destination == current] / doors_open = True
state "movingDown" as movingDown {

movingDown : **entry** / current = current - 1
movingDown --> movingDown : [destination < current]

}
state "movingUp" as movingUp {

movingUp : **entry** / current = current + 1
movingUp --> movingUp : [destination > current]

}
}
state "doorsClosed" as doorsClosed {
doorsClosed --> movingUp : [destination > current]
doorsClosed --> movingDown : [destination < current and destination >= 0]

}
state "doorsOpen" as doorsOpen {

doorsOpen -right-> doorsClosed : [destination != current] / doors_open = False
doorsOpen -right-> doorsClosed : [after(10) and current > 0] / destination = 0;

→˓doors_open = False
}

}
}
@enduml

See also:

PlantUML’s rendering can be modified to some extent by adjusting the notation used for transitions. By default, -->
transitions correspond to downward transitions of good length.

A transition can be shortened by using -> instead of -->, and the direction of a transition can be changed by us-
ing -up->`, ``-right->`, ``-down->` or ``-left->. Both changes can be applied at the same time

2.2. Statecharts definition 13

http://plantuml.com/
http://www.plantuml.com/plantuml/

Sismic Documentation, Release 1.1.2

using -u->, -r->`, ``-d-> or -l->. See PlantUML documentation for more information.

If you have already exported a statechart to PlantUML and made some changes to the direction or length of the
transitions, it is likely that you will want to retrieve these changes when you export the (possibly modified) statechart
again to PlantUML.

The export_to_plantuml() function accepts two optional (mutually exclusive) parameters based_on and
based_on_filepath that can be used to provide an earlier version of a PlantUML text representation (or a path
to such a version if based_on_filepath is used). This will then be used to incorporate as much as possible the
changes made on the transitions.

sismic.io.export_to_plantuml(statechart, filepath=None, *, based_on=None,
based_on_filepath=None, statechart_name=True, stat-
echart_description=False, statechart_preamble=False,
state_contracts=False, state_action=True, transi-
tion_contracts=False, transition_action=True)

Export given statechart to plantUML (see http://plantuml/plantuml). If a filepath is provided, also save the
output to this file.

Due to the way statecharts are representing, and due to the presence of features that are specific to Sismic, the
resulting statechart representation does not include all the informations. For example, final states and history
states won’t have name, actions and contracts.

If a previously exported representation for the statechart is provided, either as text (based_on parameter) or as a
filepath (based_on_filepath parameter), it will attempt to reuse the modifications made to the transitions (their
direction and length).

Parameters

• statechart (Statechart) – statechart to export

• filepath (Optional[str]) – save output to given filepath, if provided

• based_on (Optional[str]) – existing representation of the statechart in PlantUML

• based_on_filepath (Optional[str]) – filepath to an existing representation of the
statechart in PlantUML

• statechart_name (bool) – include the name of the statechart

• statechart_description (bool) – include the description of the statechart

• statechart_preamble (bool) – include the preamble of the statechart

• state_contracts (bool) – include state contracts

• state_action (bool) – include state actions (on entry, on exit and internal transitions)

• transition_contracts (bool) – include transition contracts

• transition_action (bool) – include actions on transition

Return type str

Returns textual representation using plantuml

2.3 Statecharts execution

2.3.1 Statechart semantics

The module interpreter contains an Interpreter class that interprets a statechart mainly following the
SCXML 1.0 semantics. In particular, eventless transitions are processed before transitions containing events, internal

14 Chapter 2. Features

http://plantuml.com/state-diagram
http://plantuml/plantuml
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
http://www.w3.org/TR/scxml/

Sismic Documentation, Release 1.1.2

events are consumed before external events, and the simulation follows a inner-first/source-state and run-to-completion
semantics.

The main difference between SCXML and Sismic’s default interpreter resides in how multiple transitions can be
triggered simultaneously. This may occur for transitions in orthogonal/parallel states, or when transitions declaring
the same event have guards that are not mutually exclusive.

Simulating the simultaneous triggering of multiple transitions is problematic, since it implies to make a non-
deterministic choice on the order in which the transitions must be processed, and on the order in which the source
states must the exited and the target states must be entered. The UML 2.5 specification explicitly leaves this issue
unresolved, thereby delegating the decision to tool developers:

“Due to the presence of orthogonal Regions, it is possible that multiple Transitions (in different Regions)
can be triggered by the same Event occurrence. The order in which these Transitions are executed is
left undefined.” — UML 2.5 Specification

The SCXML specification addresses the issue by using the document order (i.e., the order in which the transitions
appear in the SCXML file) as the order in which (non-parallel) transitions should be processed.

“If multiple matching transitions are present, take the first in document order.” — SCXML Specification

From our point of view, this solution is not satisfactory. The execution should not depend on the (often arbitrary)
order in which items happen to be declared in some document, in particular when there may be many different ways
to construct or to import a statechart.

Another statechart tool does not even define any order on the transitions in such situations:

“Rhapsody detects such cases of nondeterminism during code generation and does not allow them. The
motivation for this is that the generated code is intended to serve as a final implementation and for most
embedded software systems such nondeterminism is not acceptable.” — The Rhapsody Semantics of
Statecharts

We decide to follow Rhapsody and to raise an error (in fact, a NonDeterminismError) if such cases of nonde-
terminism occur during the execution. Notice that this only concerns multiple transitions in the same composite state,
not in parallel states.

When multiple transitions are triggered from within distinct parallel states, the situation is even more intricate. Ac-
cording to the Rhapsody implementation:

“The order of firing transitions of orthogonal components is not defined, and depends on an arbitrary
traversal in the implementation. Also, the actions on the transitions of the orthogonal components are
interleaved in an arbitrary way.” — The Rhapsody Semantics of Statecharts

SCXML circumvents this problem by relying again on the document order.

“enabledTransitions will contain multiple transitions only if a parallel state is active. In that case, we may
have one transition selected for each of its children. [. . .] If multiple states are active (i.e., we are in a
parallel region), then there may be multiple transitions, one per active atomic state (though some states
may not select a transition.) In this case, the transitions are taken in the document order of the atomic
states that selected them.” — SCXML Specification

Again, Sismic does not agree with SCXML on this, and instead defines that multiple orthogonal/parallel transitions
should be processed in a decreasing source state depth order. This is perfectly coherent with our aforementioned
inner-first/source-state semantics, as “deeper” transitions are processed before “less nested” ones. In case of ties, the
lexicographic order of the source state names will prevail.

Note that in an ideal world, orthogonal/parallel regions should be independent, implying that in principle such situa-
tions should not arise (“the designer does not rely on any particular order for event instances to be dispatched to the
relevant orthogonal regions”, UML specification). In practice, however, it is often desirable to allow such situations.

See also:

2.3. Statecharts execution 15

http://www.omg.org/cgi-bin/doc?formal/15-03-01.pdf
http://www.w3.org/TR/scxml/#AlgorithmforSCXMLInterpretation
http://research.microsoft.com/pubs/148785/charts04.pdf
http://research.microsoft.com/pubs/148785/charts04.pdf
http://research.microsoft.com/pubs/148785/charts04.pdf
http://www.w3.org/TR/scxml/#AlgorithmforSCXMLInterpretation

Sismic Documentation, Release 1.1.2

Other semantics can be quite easily implemented. For example, the extension sismic-semantics already provides
support for outer-first/source-state semantics and priority to transitions with event. More information on Extensions
for Sismic.

2.3.2 Using Interpreter

An Interpreter instance is constructed upon a Statechart instance and an optional callable that returns an
Evaluator. This callable must accept an interpreter and an initial execution context as input (see Include code in
statecharts). If not specified, a PythonEvaluator will be used. This default evaluator can parse and interpret
Python code in statecharts.

Consider the following example:

When an interpreter is built, the statechart is not yet in an initial configuration. To put the statechart in its initial
configuration (and to further execute the statechart), call execute_once().

print('Before:', interpreter.configuration)

step = interpreter.execute_once()

print('After:', interpreter.configuration)

Before: []
After: ['active', 'floorListener', 'movingElevator', 'doorsOpen', 'floorSelecting']

The method execute_once() returns information about what happened during the execution, including the transi-
tions that were processed, the event that was consumed and the sequences of entered and exited states (see Macro and
micro steps and sismic.model.MacroStep).

for attribute in ['event', 'transitions', 'entered_states', 'exited_states', 'sent_
→˓events']:

print('{}: {}'.format(attribute, getattr(step, attribute)))

event: None
transitions: []
entered_states: ['active', ...]
exited_states: []
sent_events: []

One can send events to the statechart using its sismic.interpreter.Interpreter.queue() method. This
method accepts either an Event instance, or the name of an event. Multiple events (or names) can be provided at
once.

from sismic.interpreter import Event

interpreter.queue(Event('click'))
interpreter.execute_once() # Process the "click" event

interpreter.queue('clack') # An event name can be provided as well
interpreter.execute_once() # Process the "clack" event

interpreter.queue('click', 'clack')
interpreter.execute_once() # Process "click"
interpreter.execute_once() # Process "clack"

For convenience, queue() returns the interpreter and thus can be chained:

16 Chapter 2. Features

Sismic Documentation, Release 1.1.2

interpreter.queue('click', 'clack').execute_once()

Notice that execute_once() consumes at most one event at a time. In this example, the clack event is not pro-
cessed.

To process all events at once, one can repeatedly call execute_once() until it returns a None value, meaning that
nothing happened during the last call. For instance:

while interpreter.execute_once():
pass

For convenience, an interpreter has a execute() method that repeatedly call execute_once() and that returns
a list of its output (a list of sismic.model.MacroStep).

from sismic.model import MacroStep

interpreter.queue('click', 'clack')

for step in interpreter.execute():
assert isinstance(step, MacroStep)

Notice that a call to execute() first computes the list and then returns it, meaning that all the steps are already
processed when the call returns. As a call to execute() could lead to an infinite execution (see for example
simple/infinite.yaml), an additional parameter max_steps can be specified to limit the number of steps that are
computed and executed by the method. By default, this parameter is set to -1, meaning there is no limit on the
number of calls to execute_once().

interpreter.queue('click', 'clack', 'clock')
assert len(interpreter.execute(max_steps=2)) <= 2

'clock' is not yet processed
assert len(interpreter.execute()) == 1

In these examples, none of click, clack or clock are expected to be received by the statechart. The statechart was not
written to react to those events, and thus sending them has no effect on the active configuration.

For convenience, a Statechart has an events_for() method that returns the list of all possible events that are
expected by this statechart.

print(elevator.events_for(interpreter.configuration))

['floorSelected']

The elevator statechart, the one used for this example, only reacts to floorSelected events. Moreover, it assumes that
floorSelected events have an additional parameter named floor. These events are parametrized events, and can be
created by providing keyword arguments when instanciating Event.

selecting_floor = Event('floorSelected', floor=1)

These parameters can be accessed by action code and guards in the statechart. For example, the floorSelecting state of
the elevator example has a transition floorSelected / destination = event.floor.

Executing the statechart will make the elevator reaching first floor:

print('Current floor is', interpreter.context['current'])

(continues on next page)

2.3. Statecharts execution 17

https://github.com/AlexandreDecan/sismic/blob/master/tests/yaml/infinite.yaml

Sismic Documentation, Release 1.1.2

(continued from previous page)

interpreter.queue(selecting_floor).execute()
print('Current floor is', interpreter.context['current'])

Current floor is 0
Current floor is 1

Notice how we can access to the current values of internal variables by use of context. This attribute is a mapping
between internal variable names and their current value.

2.3.3 Macro and micro steps

An interpreter execute_once() (resp. execute()) method returns an instance of (resp. a list of) sismic.
model.MacroStep. A macro step corresponds to the process of consuming an event, regardless of the number and
the type (eventless or not) of triggered transitions. A macro step also includes every consecutive stabilization step (i.e.,
the steps that are needed to enter nested states, or to switch into the configuration of a history state).

A MacroStep exposes the consumed event if any, a (possibly empty) list transitions of Transition
instances, and two aggregated ordered sequences of state names, entered_states and exited_states. In
addition, a MacroStep exposes a list sent_events of events that were fired by the statechart during the considered
step. The order of states in those lists determines the order in which their on entry and on exit actions were processed.
As transitions are atomically processed, this means that they could exit a state in entered_states that is entered
before some state in exited_states is exited. The exact order in which states are exited and entered is indirectly
available through the steps attribute that is a list of all the MicroStep that were executed. Each of them contains
the states that were exited and entered during its execution, and the a list of events that were sent during the step.

A micro step is the smallest, atomic step that a statechart can execute. A MacroStep instance thus can be viewed
(and is!) an aggregate of MicroStep instances.

This way, a complete run of a statechart can be summarized as an ordered list of MacroStep instances, and details
can be obtained using the MicroStep list of a MacroStep.

2.3.4 Observing the execution

The interpreter is fully observable during its execution. It provides many public and private attributes that can be used
to see what happens. In particular:

• The execute_once() (resp. execute()) method returns an instance of (resp. a list of) sismic.model.
MacroStep.

• The log_trace() function can be used to log all the steps that were processed during the execution of an
interpreter. This methods takes an interpreter and returns a (dynamic) list of macro steps.

• The list of active states can be retrieved using configuration.

• The context of the execution is available using context (see Include code in statecharts).

• It is possible to bind a callable that will be called each time an event is sent by the statechart using the bind()
method of an interpreter (see Communication between statecharts).

2.3.5 Anatomy of the interpreter

An Interpreter makes use of several private methods for its initialization and computations. These methods
computes the transition(s) that should be processed, the resulting steps, etc. These methods can be overridden or
combined to define variants of statechart semantics.

18 Chapter 2. Features

Sismic Documentation, Release 1.1.2

Interpreter._select_event(consume=True)
Return (and consume!) the next available event if any. This method prioritizes internal events over external
ones.

Parameters consume – Set to False to not consume the event.

Return type Optional[Event]

Returns An instance of Event or None if no event is available

Interpreter._select_transitions()
Select the transitions that could be triggered and the corresponding (optional) event. If automatic transitions (ie.
ones without event) are found, return them and do not look for transitions with event. Otherwise, consume next
event and return a possibly empty list of transitions that could be fired with this event.

Return type Tuple[Optional[Event], List[Transition]]

Returns a couple (event instance, list of Transition instances)

Interpreter._filter_transitions(transitions)
Given a list of transitions, return a filtered list of transitions with respect to the inner-first/source-state semantic.

Parameters transitions (List[Transition]) – a list of Transition instances

Return type List[Transition]

Returns a list of Transition instances

Interpreter._sort_transitions(transitions)
Given a list of triggered transitions, return a list of transitions in an order that represents the order in which they
have to be processed.

Parameters transitions (List[Transition]) – a list of Transition instances

Return type List[Transition]

Returns an ordered list of Transition instances

Raises ExecutionError – In case of non-determinism (NonDeterminismError) or conflicting
transitions (ConflictingTransitionsError).

Interpreter._create_steps(event, transitions)
Return a (possibly empty) list of micro steps. Each micro step corresponds to the process of a transition matching
given event.

Parameters

• event (Event) – the event to consider, if any

• transitions (Iterable[Transition]) – the transitions that should be processed

Return type List[MicroStep]

Returns a list of micro steps.

Interpreter._create_stabilization_step(names)
Return a stabilization step, ie. a step that lead to a more stable situation for the current statechart. Stabilization
means:

• Enter the initial state of a compound state with no active child

• Enter the memory of a history state

• Enter the children of an orthogonal state with no active child

• Empty active configuration if root’s child is a final state

2.3. Statecharts execution 19

Sismic Documentation, Release 1.1.2

Parameters names (Iterable[str]) – List of states to consider (usually, the active configura-
tion)

Return type Optional[MicroStep]

Returns A MicroStep instance or None if this statechart can not be more stabilized

Interpreter._apply_step(step)
Apply given MicroStep on this statechart

Parameters step (MicroStep) – MicroStep instance

Return type MicroStep

Returns a new MicroStep, completed with sent events

These methods are all used (even indirectly) by execute_once.

See also:

Consider looking at the source of execute_once to understand how these methods are related and organized.

2.4 Include code in statecharts

2.4.1 Python code evaluator

A statechart can specify code that needs to be executed under some circumstances. For example, the preamble of a
statechart, the guard or action of a transition or the on entry and on exit of a state may all contain code.

In Sismic, these pieces of code can be evaluated and executed by Evaluator instances. By default, when an
interpreter is created, a PythonEvaluator is created and allows the interpreter to evaluate and execute Python
code contained in a statechart.

Alternatively, a DummyEvaluator that always evaluates conditions to True and silently ignores actions can be
used, but is clearly of less interest.

In the following, we will implicitly assume that the code evaluator is an instance of PythonEvaluator.

2.4.2 Context of the Python code evaluator

When a code evaluator is created or provided to an interpreter, its context is exposed through the context attribute
of the interpreter. The context of an evaluator is a mapping between variable names and their values. When a piece of
code contained in a statechart has to be evaluated or executed, the context of the evaluator is used to populate the local
and global variables that are available for this piece of code.

As an example, consider the following partial statechart definition.

statechart:
...
preamble: |
x = 1
y = 0

root state:
name: s1
on entry: x += 1

20 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

When an interpreter is created for this statechart, its preamble is executed and the context of the code evaluator is
populated with {'x': 1, 'y': 0}. When the statechart is further executed (initialized), and its root state s1
is entered, the code x += 1 contained in the on entry field of s1 is then executed in this context. After execution,
the context is {'x': 2, 'y': 0}.

The default code evaluator has a global context that is always exposed when a piece of code has to be evaluated or
executed. When a PythonEvaluator instance is initialized, an initial context can be specified. For convenience,
the initial context can be directly provided to the constructor of an Interpreter.

It should be noticed that the initial context is set before executing the preamble of a statechart. While this should be
expected, it has the direct consequence that if a variable defined in the initial context is also defined by the preamble,
the latter will override its value, as illustrated by the following example:

from sismic.io import import_from_yaml
from sismic.interpreter import Interpreter
import math as my_favorite_module

yaml = """statechart:
name: example
preamble:
x = 1

root state:
name: s

"""

statechart = import_from_yaml(yaml)
context = {

'x': 2,
'math': my_favorite_module

}

interpreter = Interpreter(statechart, initial_context=context)

print(interpreter.context['x'])

1

In this example, the value of x is eventually set to 1. While the initial context provided to the interpreter defined the
value of x to 2, the code contained in the preamble overrode its value. If you want to make use of the initial context
to somehow parametrize the execution of the statechart, while still providing default values for these parameters, you
should check the existence of the variables before setting their values. This can be done as follows:

if not 'x' in locals():
x = 1

or equivalently,

x = locals().get('x', 1)

Warning: Under the hood, a Python evaluator makes use of eval() and exec()with global and local contexts.
This can lead to some weird issues with variable scope (as in list comprehensions or lambda’s). See this question
on Stackoverflow for more information.

2.4. Include code in statecharts 21

http://stackoverflow.com/questions/32894942/listcomp-unable-to-access-locals-defined-in-code-called-by-exec-if-nested-in-fun
http://stackoverflow.com/questions/32894942/listcomp-unable-to-access-locals-defined-in-code-called-by-exec-if-nested-in-fun

Sismic Documentation, Release 1.1.2

2.4.3 Predefined variables and functions

When a piece of code is evaluated or executed, the default Python code evaluator enriches its local context with several
predefined variables and functions. These predefined objects depend on the situation triggering a code evaluation or a
code execution (entry or exit actions, guard evaluation, transition action, . . .).

These entries are covered in the docstring of a PythonEvaluator:

class sismic.code.PythonEvaluator(interpreter=None, *, initial_context=None)
A code evaluator that understands Python.

Depending on the method that is called, the context can expose additional values:

• On both code execution and code evaluation:

– A time: float value that represents the current time exposed by the interpreter.

– An active(name: str) -> bool Boolean function that takes a state name and return True if and only
if this state is currently active, ie. it is in the active configuration of the Interpreter instance
that makes use of this evaluator.

• On code execution:

– A send(name: str, **kwargs) -> None function that takes an event name and additional keyword
parameters and raises an internal event with it.

– If the code is related to a transition, the event: Event that fires the transition is exposed.

• On guard or contract evaluation:

– If the code is related to a transition, the event: Event that fires the transition is exposed.

• On guard or contract (except preconditions) evaluation:

– An after(sec: float) -> bool Boolean function that returns True if and only if the source state was
entered more than sec seconds ago. The time is evaluated according to Interpreter’s clock.

– A idle(sec: float) -> bool Boolean function that returns True if and only if the source state did not
fire a transition for more than sec ago. The time is evaluated according to Interpreter’s clock.

• On contract (except preconditions) evaluation:

– A variable __old__ that has an attribute x for every x in the context when either the state was
entered (if the condition involves a state) or the transition was processed (if the condition involves
a transition). The value of __old__.x is a shallow copy of x at that time.

• On contract evaluation:

– A sent(name: str) -> bool function that takes an event name and return True if an event with the
same name was sent during the current step.

– A received(name: str) -> bool function that takes an event name and return True if an event with
the same name is currently processed in this step.

If an exception occurred while executing or evaluating a piece of code, it is propagated by the evaluator.

Parameters

• interpreter – the interpreter that will use this evaluator, is expected to be an Interpreter
instance

• initial_context (Optional[Mapping[str, Any]]) – a dictionary that will be used
as __locals__

22 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

2.4.4 Anatomy of a code evaluator

An Evaluator subclass must at lest implement the following methods and attributes:

Evaluator._evaluate_code(code, *, additional_context=None)
Generic method to evaluate a piece of code. This method is a fallback if one of the other evaluate_* methods is
not overridden.

Parameters

• code (str) – code to evaluate

• additional_context (Optional[Mapping[str, Any]]) – an optional additional
context

Return type bool

Returns truth value of code

Evaluator._execute_code(code, *, additional_context=None)
Generic method to execute a piece of code. This method is a fallback if one of the other execute_* methods is
not overridden.

Parameters

• code (str) – code to execute

• additional_context (Optional[Mapping[str, Any]]) – an optional additional
context

Return type List[Event]

Returns a list of sent events

Evaluator.context
The context of this evaluator. A context is a dict-like mapping between variables and values that is expected to
be exposed when the code is evaluated.

Return type Mapping[str, Any]

Note: None of those two methods are actually called by the interpreter during the execution of a statechart. These
methods are fallback methods that are used by other methods that are implicitly called depending on what is currently
being processed in the statechart. The documentation of Evaluator covers this:

class sismic.code.Evaluator(interpreter=None, *, initial_context=None)
Abstract base class for any evaluator.

An instance of this class defines what can be done with piece of codes contained in a statechart (condition,
action, etc.).

Notice that the execute_* methods are called at each step, even if there is no code to execute. This allows the
evaluator to keep track of the states that are entered or exited, and of the transitions that are processed.

Parameters

• interpreter – the interpreter that will use this evaluator, is expected to be an Interpreter
instance

• initial_context (Optional[Mapping[str, Any]]) – an optional dictionary to
populate the context

evaluate_guard(transition, event=None)
Evaluate the guard for given transition.

2.4. Include code in statecharts 23

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

Parameters

• transition (Transition) – the considered transition

• event (Optional[Event]) – instance of Event if any

Return type Optional[bool]

Returns truth value of code

evaluate_invariants(obj, event=None)
Evaluate the invariants for given object (either a StateMixin or a Transition) and return a list of conditions
that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

evaluate_postconditions(obj, event=None)
Evaluate the postconditions for given object (either a StateMixin or a Transition) and return a list of con-
ditions that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

evaluate_preconditions(obj, event=None)
Evaluate the preconditions for given object (either a StateMixin or a Transition) and return a list of condi-
tions that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

execute_action(transition, event=None)
Execute the action for given transition. This method is called for every transition that is processed, even
those with no action.

Parameters

• transition (Transition) – the considered transition

• event (Optional[Event]) – instance of Event if any

Return type List[Event]

Returns a list of sent events

24 Chapter 2. Features

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

execute_on_entry(state)
Execute the on entry action for given state. This method is called for every state that is entered, even those
with no on_entry.

Parameters state (StateMixin) – the considered state

Return type List[Event]

Returns a list of sent events

execute_on_exit(state)
Execute the on exit action for given state. This method is called for every state that is exited, even those
with no on_exit.

Parameters state (StateMixin) – the considered state

Return type List[Event]

Returns a list of sent events

execute_statechart(statechart)
Execute the initial code of a statechart. This method is called at the very beginning of the execution.

Parameters statechart (Statechart) – statechart to consider

on_step_starts(event=None)
Called each time the interpreter starts a macro step.

Parameters event (Optional[Event]) – Optional processed event

Return type None

2.5 Design by Contract for statecharts

2.5.1 About Design by Contract

Design by Contract (DbC) was introduced by Bertrand Meyer and popularised through his object-oriented Eiffel
programming language. Several other programming languages also provide support for DbC. The main idea is that
the specification of a software component (e.g., a method, function or class) is extended with a so-called contract
that needs to be respected when using this component. Typically, the contract is expressed in terms of preconditions,
postconditions and invariants.

Design by contract (DbC), also known as contract programming, programming by contract and design-by-
contract programming, is an approach for designing software. It prescribes that software designers should
define formal, precise and verifiable interface specifications for software components, which extend the
ordinary definition of abstract data types with preconditions, postconditions and invariants. These
specifications are referred to as “contracts”, in accordance with a conceptual metaphor with the conditions
and obligations of business contracts. — Wikipedia

2.5.2 DbC for statechart models

While DbC has gained some amount of acceptance at the programming level, there is hardly any support for it at the
modeling level.

Sismic aims to change this, by integrating support for Design by Contract for statecharts. The basic idea is that
contracts can be defined on statechart componnents (states or transitions), by specifying preconditions, postconditions,
and invariants on them. At runtime, Sismic will verify the conditions specified by the contracts. If a condition is not

2.5. Design by Contract for statecharts 25

https://docs.python.org/3.4/library/constants.html#None
https://en.wikipedia.org/wiki/Design_by_contract

Sismic Documentation, Release 1.1.2

satisfied, a ContractError will be raised. More specifically, one of the following 4 error types wil be raised:
PreconditionError, PostconditionError, or InvariantError.

Contracts can be specified for any state contained in the statechart, and for any transition contained in the statechart.
A state contract can contain preconditions, postconditions, and/or invariants. The semantics for evaluating a contract
is as follows:

• For states:

– state preconditions are checked before the state is entered (i.e., before executing on entry), in the order
of occurrence of the preconditions.

– state postconditions are checked after the state is exited (i.e., after executing on exit), in the order of
occurrence of the postconditions.

– state invariants are checked at the end of each macro step, in the order of occurrence of the invariants.
The state must be in the active configuration.

• For transitions:

– the preconditions are checked before starting the process of the transition (and before executing the
optional transition action).

– the postconditions are checked after finishing the process of the transition (and after executing the
optional transition action).

– the invariants are checked twice: one before starting and a second time after finishing the process of
the transition.

2.5.3 Defining contracts in YAML

Contracts can easily be added to the YAML definition of a statechart (see Defining statecharts in YAML) through
the use of the contract property. Preconditions, postconditions, and invariants are defined as nested items of the
contract property. The name of these optional contractual conditions is respectively before (for preconditions), after
(for postconditions), and always (for invariants):

contract:
- before: ...
- after: ...
- always: ...

Obviously, more than one condition of each type can be specified:

contract:
- before: ...
- before: ...
- before: ...
- after: ...

A condition is an expression that will be evaluated by an Evaluator instance (see Include code in statecharts).

contract:
- before: x > 0
- before: y > 0
- after: x + y == 0
- always: x + y >= 0

Here is an example of a contracts defined at state level:

26 Chapter 2. Features

Sismic Documentation, Release 1.1.2

statechart:
name: example
root state:
name: root
contract:
- always: x >= 0
- always: not active('other state') or x > 0

If the default PythonEvaluator is used, it is possible to refer to the old value of some variable used in the
statechart, by prepending __old__. This is particularly useful when specifying postconditions and invariants:

contract:
always: d > __old__.d
after: (x - __old__.x) < d

See the documentation of PythonEvaluator for more information.

2.5.4 Executing statecharts containing contracts

The execution of a statechart that contains contracts does not essentially differ from the execution of a statechart that
does not. The only difference is that conditions of each contract are checked at runtime (as explained above) and may
raise a subclass of ContractError.

from sismic.interpreter import Interpreter, Event
from sismic.io import import_from_yaml

statechart = import_from_yaml(filepath='examples/elevator/elevator_contract.yaml')

Make the run fails
statechart.state_for('movingUp').preconditions[0] = 'current > destination'

interpreter = Interpreter(statechart)
interpreter.queue(Event('floorSelected', floor=4))
interpreter.execute()

Here we manually changed one of the preconditions such that it failed at runtime. The exception displays some
relevant information to help debug:

Traceback (most recent call last):
...

sismic.exceptions.PreconditionError: PreconditionError
Object: BasicState('movingUp')
Assertion: current > destination
Configuration: ['active', 'floorListener', 'movingElevator', 'floorSelecting', 'moving
→˓']
Step: MicroStep(transition=Transition('doorsClosed', 'movingUp', event=None), entered_
→˓states=['moving', 'movingUp'], exited_states=['doorsClosed'])
Context:
- current = 0
- destination = 4
- doors_open = False

If you do not want the execution to be interrupted by such exceptions, you can set the ignore_contract parameter
to True when constructing an Interpreter. This way, no contract checking will be done during the execution.

2.5. Design by Contract for statecharts 27

Sismic Documentation, Release 1.1.2

2.6 Monitoring properties

2.6.1 About runtime verification

Like any executable software artefacts, statecharts can and should be tested during their development.

One possible appproach is to test the execution of a statechart by hand, writing unit tests or BDD tests. The Sismic
interpreter stores and returns several values that can be inspected during the execution, including the active configura-
tion, the list of entered or exited states, etc. The functional tests in tests/test_interpreter.py on the GitHub repository
are several examples of this kind of tests.

Another key feature of Sismic’s interpreter is its support for monitoring properties at runtime, not only contracts. To
avoid a statechart designer needing to learn a different language for expressing such properties, these properties are
expressed using the statechart notation. These properties are then called property statecharts

2.6.2 Using statecharts to express properties

Property statecharts can be used to express functional properties of the intended behaviour in terms of the events that
are consumed or sent, or in terms of the states that are entered or exited by a statechart. When a statechart is executed
by Sismic, specific meta-events are created based on the events that are sent or consumed, the states that are entered of
exited, etc. When the statechart being monitored is executed, the meta-events are propagated to all associated property
statecharts. The property statecharts will look for property violations based on those meta-events, following a fail fast
approach: they will report a failure as soon as the monitored behavior leads to a final state of the property statechart.

Due to the meta-events being considered and the “fail-fast” approach adopted by Sismic for their verification, property
statecharts are mainly intended to check for the presence of undesirable behavior (safety properties), i.e., properties
that can be checked on a (finite) prefix of a (possibly infinite) execution trace. While it is technically possible to
use property statecharts to express liveliness properties (something desirable eventually happens), this would require
additional code for their verification since liveliness properties are not supported “as is” by Sismic.

During the execution of a statechart, several meta-events are created depending on what happens in the statechart being
executed. Those meta-events are automatically send to any previously bound property statechart.

To bind a property statechart to an interpreter, it suffices to provide the property statechart as a parameter of the
bind_property_statechart() method of an interpreter. This method accepts either a Statechart or an
Interpreter instance.

When a property statechart is bound to an interpreter, its internal clock (the time attribute) is automatically synchro-
nised with the one of the interpreter.

If a property statechart reaches a final state during its execution, then the property is considered as not satisfied,
and a PropertyStatechartError is raised. This exception provides access to the interpreter that executed the
property, the active configuration of statechart being executed, the latest executed MacroStep and the current context
of the interpreter.

2.6.3 Meta-events generated by the interpreter

The complete list of MetaEvent that are created by the interpreter is described in the documentation of the
bind_property_statechart() method:

Interpreter.bind_property_statechart(statechart_or_interpreter)
Bind a property statechart to the current interpreter. A property statechart receives meta-events from the current
interpreter depending on what happens:

• step started: when a macro step starts.

28 Chapter 2. Features

Sismic Documentation, Release 1.1.2

• step ended: when a macro step ends.

• event consumed: when an event is consumed. The consumed event is exposed through the event attribute.

• event sent: when an event is sent. The sent event is exposed through the event attribute.

• state exited: when a state is exited. The exited state is exposed through the state attribute.

• state entered: when a state is entered. The entered state is exposed through the state attribute.

• transition processed: when a transition is processed. The source state, target state and the event are exposed
respectively through the source, target and event attribute.

The internal clock of all property statecharts will be synced with the one of the current interpreter. As soon as a
property statechart reaches a final state, a PropertyStatechartError will be raised, implicitly meaning
that the property expressed by the corresponding property statechart is not satisfied.

Parameters statechart_or_interpreter (Union[Statechart, Interpreter]) – A
property statechart or an interpreter of a property statechart.

Return type None

2.6.4 Examples of property statecharts

7th floor is never reached

This property statechart ensures that the 7th floor is never reached. It stores the current floor based on the number of
times the elevator goes up and goes down.

statechart:
name: Test that the elevator never reachs 7th floor
preamble: floor = 0
root state:
name: root
initial: standing
states:

- name: standing
transitions:
- event: state entered

guard: event.state == 'moving'
target: moving

- guard: floor == 7
target: fail

- name: moving
transitions:
- event: state entered
guard: event.state == 'movingUp'
action: floor += 1

- event: state entered
guard: event.state == 'movingDown'
action: floor -= 1

- event: state exited
guard: event.state == 'moving'
target: standing

- name: fail
type: final

2.6. Monitoring properties 29

https://docs.python.org/3.4/library/constants.html#None

Sismic Documentation, Release 1.1.2

Elevator moves after 10 seconds

This property statechart checks that the elevator automatically moves after some idle time if it is not on the ground
floor. The test sets a timeout of 12 seconds, but it should work for any number strictly greater than 10 seconds.

statechart:
name: Test that the elevator goes to ground floor after 10 seconds (timeout set to

→˓12 seconds)
preamble: floor = 0
root state:
name: root
initial: active
states:

- name: active
parallel states:
- name: guess floor
transitions:
- event: state entered
guard: event.state == 'movingUp'
action: floor += 1

- event: state entered
guard: event.state == 'movingDown'
action: floor -= 1

- name: check timeout
initial: standing
states:
- name: standing
transitions:
- event: state entered
guard: event.state == 'moving'
target: moving

- guard: after(12) and floor != 0
target: timeout

- name: moving
transitions:
- event: state exited
guard: event.state == 'moving'
target: standing

- name: timeout
type: final

Heating does not start if door is opened

This property statechart checks that the heating of a microwave could not start if the door is currently opened.

statechart:
name: Heating does not start if door is opened
root state:
name: root
initial: door is closed
states:

- name: door is closed
transitions:
- target: door is opened

event: event consumed
guard: event.event.name == 'door_opened'

(continues on next page)

30 Chapter 2. Features

Sismic Documentation, Release 1.1.2

(continued from previous page)

- name: door is opened
transitions:
- target: door is closed
event: event consumed
guard: event.event.name == 'door_closed'

- target: failure
event: event sent
guard: event.event.name == 'heating_on'

- name: failure
type: final

Heating must stop when door is opened

This property statechart ensures that the heating should quickly stop when the door is open while cooking occurs.

statechart:
name: Test that the elevator never reachs 7th floor
preamble: floor = 0
root state:
name: root
initial: standing
states:

- name: standing
transitions:
- event: state entered

guard: event.state == 'moving'
target: moving

- guard: floor == 7
target: fail

- name: moving
transitions:
- event: state entered
guard: event.state == 'movingUp'
action: floor += 1

- event: state entered
guard: event.state == 'movingDown'
action: floor -= 1

- event: state exited
guard: event.state == 'moving'
target: standing

- name: fail
type: final

2.7 Behavior-Driven Development

2.7.1 About Behavior-Driven Development

This introduction is inspired by the documentation of Behave, a Python library for Behavior-Driven Development
(BDD). BDD is an agile software development technique that encourages collaboration between developers, QA and
non-technical or business participants in a software project. It was originally named in 2003 by Dan North as a
response to test-driven development (TDD), including acceptance test or customer test driven development practices
as found in extreme programming.

2.7. Behavior-Driven Development 31

http://behave.readthedocs.io/en/latest/philosophy.html

Sismic Documentation, Release 1.1.2

BDD focuses on obtaining a clear understanding of desired software behavior through discussion with stakeholders. It
extends TDD by writing test cases in a natural language that non-programmers can read. Behavior-driven developers
use their native language in combination with the language of domain-driven design to describe the purpose and benefit
of their code. This allows developers to focus on why the code should be created, rather than the technical details, and
minimizes translation between the technical language in which the code is written and the domain language spoken by
the business, users, stakeholders, project management, etc.

2.7.2 The Gherkin language

The Gherkin language is a business readable, domain specific language created to support behavior descriptions in
BDD. It lets you describe software’s behaviour without the need to know its implementation details. Gherkin allows
the user to describe a software feature or part of a feature by means of representative scenarios of expected outcomes.
Like YAML or Python, Gherkin aims to be a human-readable line-oriented language.

Here is an example of a feature and scenario description with Gherkin, describing part of the intended behaviour of
the Unix ls command:

Feature: ls
In order to see the directory structure
As a UNIX user
I need to be able to list the current directory's contents

Scenario: List 2 files in a directory
Given I am in a directory "test"
And I have a file named "foo"
And I have a file named "bar"
When I run "ls"
Then I should get:

"""
bar
foo
"""

As can be seen above, Gherkin files should be written using natural language - ideally by the non-technical business
participants in the software project. Such feature files serve two purposes: documentation and automated tests. Using
one of the available Gherkin parsers, it is possible to execute the described scenarios and check the expected outcomes.

See also:

A quite complete overview of the Gherkin language is available here.

2.7.3 Sismic support for BDD

Since statecharts are executable pieces of software, it is desirable for statechart users to be able to describe the intended
behavior in terms of feature and scenario descriptions. While it is possible to manually integrate the BDD process with
any library or software, Sismic is bundled with a command-line utility sismic-bdd (or python -m sismic.
bdd) that automates the integration of BDD.

Sismic support for BDD relies on Behave, a Python library for BDD with full support of the Gherkin language.

As an illustrative example, let us define the desired behavior of our elevator statechart. We first create a feature file
that contains several scenarios of interest. By convention, this file has the extension .feature, but this is not mandatory.
The example illustrates that Sismic provides a set of predefined steps (e.g., given, when, then) to describe common
statechart behavior without having to write a single line of Python code.

32 Chapter 2. Features

http://docs.behat.org/en/v2.5/guides/1.gherkin.html
http://behave.readthedocs.io/en/latest/

Sismic Documentation, Release 1.1.2

Feature: Elevator

Scenario: Elevator starts on ground floor
When I do nothing
Then variable current equals 0
And variable destination equals 0

Scenario: Elevator can move to 7th floor
When I send event floorSelected with floor=7
Then variable current equals 7

Scenario: Elevator can move to 4th floor
When I send event floorSelected

parameter	value
floor	4
dummy	None

Then variable current equals 4

Scenario: Elevator reaches ground floor after 10 seconds
When I reproduce "Elevator can move to 7th floor"
Then variable current equals 7
When I wait 10 seconds
Then variable current equals 0
Example using another step:
And expression "current == 0" holds

Scenario Outline: Elevator can reach floor from 0 to 5
When I send event floorSelected with floor=<floor>
Then variable current equals <floor>

Examples:
| floor |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |

Let us save this file as elevator.feature in the same directory as the statechart description, elevator.yaml. We can then
instruct sismic-bdd to run on this statechart the scenarios described in the feature file:

sismic-bdd elevator.yaml --features elevator.feature

Under the hood, sismic-bdd will create a temporary directory where all the files required to execute Behave are
put. It also makes available a list of predefined given, when, and then steps and sets up many hooks that are required
to integrate Sismic and Behave.

Note: Module sismic.bdd exposes a execute_bdd() function that is internally used by sismic-bdd CLI,
and that can be used if programmatic access to these features is required.

When sismic-bdd is executed, it will somehow translate the feature file into executable code, compute the outcomes
of the scenarios, check whether they match what is expected, and display as summary of all executed scenarios and
encountered errors:

2.7. Behavior-Driven Development 33

Sismic Documentation, Release 1.1.2

[...]

1 feature passed, 0 failed, 0 skipped
10 scenarios passed, 0 failed, 0 skipped
22 steps passed, 0 failed, 0 skipped, 0 undefined
Took 0m0.027s

The sismic-bdd command-line interface accepts several other parameters:

usage: sismic-bdd [-h] --features features [features ...]
[--steps steps [steps ...]]
[--properties properties [properties ...]] [--show-steps]
[--debug-on-error]
statechart

Command-line utility to execute Gherkin feature files using Behave. Extra parameters
→˓will be passed to Behave.

positional arguments:
statechart A YAML file describing a statechart

optional arguments:
-h, --help show this help message and exit
--features features [features ...]

A list of files containing features
--steps steps [steps ...]

A list of files containing steps implementation
--properties properties [properties ...]

A list of filepaths pointing to YAML property
statecharts. They will be checked at runtime following
a fail fast approach.

--show-steps Display a list of available steps (equivalent to
Behave's --steps parameter

--debug-on-error Drop in a debugger in case of step failure (ipdb if
available)

Additionally, any extra parameter provided to sismic-bdd will be passed to Behave. See command-line parameters
of Behave for more information.

2.7.4 Predefined steps

In order to be able to execute scenarios, a Python developer needs to write code defining the mapping from the actions
and assertions expressed as natural language sentences in the scenarios (using specific keywords such as given, when
or then) to Python code that manipulates the statechart. To facilitate the implementation of this mapping, Sismic
provides a set of predefined statechart-specific steps.

By convention, steps starting with given or when correspond to actions that must be applied on the statechart, while
steps starting with then correspond to assertions about the execution or the current state of the statechart. More
precisely, (1) all given or when steps implicitly call the execute() method of the underlying interpreter, (2) all
when steps capture the output of these calls, and (3) we developed all predefined then steps to assert things based on
the captured output (implying that only the steps that start with when will be monitored in practice).

“Given” and “when” steps

Given/when I send event {name}

34 Chapter 2. Features

http://behave.readthedocs.io/en/latest/behave.html#command-line-arguments
http://behave.readthedocs.io/en/latest/behave.html#command-line-arguments

Sismic Documentation, Release 1.1.2

This step queues an event with provided name.

Given/when I send event {name} with {parameter}={value}

This step queues an event with provided name and parameter. More than one parameter can be specified
when using Gherkin tables, as follows:

Scenario: Elevator can move to 4th floor
When I send event floorSelected
parameter	value
floor	4
dummy	None

Given/when I wait {seconds:g} seconds

Given/when I wait {seconds:g} second

These steps increase the internal clock of the interpreter.

Given/when I do nothing

This step does nothing. It’s main usage is when assertions using then steps are written as first steps of a
scenario. As they require a when step to be present, use “when I do nothing”.

Given/when I reproduce “{scenario}”

This step reproduces all the given and when steps that are contained in provided scenario. When this step
is prefixed with given (resp. when), the steps of the provided scenario will be reproduced using given
(resp. when).

Scenario: Elevator can move to 7th floor
When I send event floorSelected with floor=7
Then variable current equals 7

Scenario: Elevator reaches ground floor after 10 seconds
When I reproduce "Elevator can move to 7th floor"
Then variable current equals 7
When I wait 10 seconds
Then variable current equals 0

Given/when I repeat “{step}” {repeat:d} times

This step repeats given step several times. The text of the step must be provided without its keyword, and
will be executed using the current keyword (given or when).

“Then” steps

Then state {name} is entered

Then state {name} is not entered

Then state {name} is exited

Then state {name} is not exited

These steps assert that a state with provided name was respectively entered, not entered, exited, not exited.

Then state {name} is active

Then state {name} is not active

These steps assert that a state with provided name is (not) in the active configuration of the statechart.

2.7. Behavior-Driven Development 35

Sismic Documentation, Release 1.1.2

Then event {name} is fired

Then event {name} is fired with {parameter}={value}

These steps assert that an event with provided name was sent. Additional parameters can be provided
using Gherkin tables.

Then event {name} is not fired

This step asserts that no event with provided name was sent.

Then no event is fired

This step asserts that no event was fired.

Then variable {variable} equals {value}

This step asserts that the context of the statechart has a variable with a given name and a given value.

Then variable {variable} does not equal {value}

This step asserts that the context of a statechart has a variable with a given name, but a value different
than the one that is provided.

Then expression “{expression}” holds

Then expression “{expression}” does not hold

These steps assert that given expression holds (does not hold). The expression will be evaluated by the
underlying code evaluator (a PythonEvaluator by default) using the current context.

Then statechart is in a final configuration

Then statechart is not in a final configuration

These steps assert that the statechart is (not) in a final configuration.

2.7.5 Implementing new steps

While the steps that are already predefined should be sufficient to manipulate the statechart, it is more intuitive to
use domain-specific steps to write scenarios. For example, if the statechart being tested encodes the behavior of a
microwave oven, the domain-specific step “Given I open the door” corresponds to the action of sending an event
door_opened to the statechart, and is more intuitive to use when writing scenarios.

Consider the following scenarios expressed using a domain-specific language:

Feature: Cook food

Scenario: Cook food
Given I open the door
And I place an item in the oven
And I close the door
And I press increase timer button 5 times
And I press increase power button
When I press start button
Then heating turns on

Scenario: No heating when door is not closed
Given I reproduce "Cook food"
And I open the door
When I press start button
Then heating does not turn on

(continues on next page)

36 Chapter 2. Features

Sismic Documentation, Release 1.1.2

(continued from previous page)

Scenario: Opening door interrupts heating
Given I reproduce "Cook food"
And 3 seconds elapsed
When I open the door
Then heating turns off

Scenario: Lamp is on when door is open
When I open the door
Then lamp turns on
When I close the door
Then lamp turns off

Scenario: Lamp is on while cooking
When I reproduce "Cook food"
Then lamp turns on

Scenario: Cooking can be stopped stop
Given I reproduce "Cook food"
When 2 seconds elapsed
Then variable timer equals 3
When I press stop button
Then variable timer equals 0
And heating turns off

The mapping from domain-specific step “Given I open the door” to the action of sending a door opened event to the
statechart could be defined using plain Python code, by defining a new step following Python Step Implementations
of Behave.

from behave import given, when

@given('I open the door')
@when('I open the door')
def opening_door(context):

context.interpreter.queue('door_opened')

For convenience, the context parameter automatically provided by Behave at runtime exposes three Sismic-specific
attributes, namely interpreter, trace and monitored_trace. The first one corresponds to the interpreter
being executed, the second one is a list of all executed macro steps, and the third one is list of executed macro steps
restricted to the ones that were performed during the execution of the previous block of when steps.

However, this domain-specific step can also be implemented more easily as an alias of predefined step “Given I
send event door_opened”. As we believe that most of the domain-specific steps are just aliases or combinations of
predefined steps, Sismic provides two convenient helpers to map new steps to predefined ones:

sismic.bdd.map_action(step_text, existing_step_or_steps)
Map new “given”/”when” steps to one or many existing one(s). Parameters are propagated to the original step(s)
as well, as expected.

Examples:

• map_action(‘I open door’, ‘I send event open_door’)

• map_action(‘Event {name} has to be sent’, ‘I send event {name}’)

• map_action(‘I do two things’, [‘First thing to do’, ‘Second thing to do’])

Parameters

2.7. Behavior-Driven Development 37

http://behave.readthedocs.io/en/latest/tutorial.html#python-step-implementations

Sismic Documentation, Release 1.1.2

• step_text (str) – Text of the new step, without the “given” or “when” keyword.

• existing_step_or_steps (Union[str, List[str]]) – existing step, without the
“given” or “when” keyword. Could be a list of steps.

Return type None

sismic.bdd.map_assertion(step_text, existing_step_or_steps)
Map a new “then” step to one or many existing one(s). Parameters are propagated to the original step(s) as well,
as expected.

map_assertion(‘door is open’, ‘state door open is active’) map_assertion(‘{x} seconds elapsed’, ‘I wait for {x}
seconds’) map_assertion(‘assert two things’, [‘first thing to assert’, ‘second thing to assert’])

Parameters

• step_text (str) – Text of the new step, without the “then” keyword.

• existing_step_or_steps (Union[str, List[str]]) – existing step, without
“then” keyword. Could be a list of steps.

Return type None

Using these helpers, one can easily implement the domain-specific steps of our example:

from sismic.bdd import map_action, map_assertion

map_action('I open the door', 'I send event door_opened')
map_action('I close the door', 'I send event door_closed')
map_action('I place an item in the oven', 'I send event item_placed')
map_action('I press increase timer button {time} times', 'I repeat "I send event
→˓timer_inc" {time} times')
map_action('I press increase power button', 'I send event power_inc')
map_action('I press start button', 'I send event cooking_start')
map_action('I press stop button', 'I send event cooking_stop')
map_action('{tick} seconds elapsed', 'I repeat "I send event timer_tick" {tick} times
→˓')

map_assertion('Heating turns on', 'Event heating_on is fired')
map_assertion('Heating does not turn on', 'Event heating_on is not fired')
map_assertion('heating turns off', 'Event heating_off is fired')
map_assertion('lamp turns on', 'Event lamp_switch_on is fired')
map_assertion('lamp turns off', 'Event lamp_switch_off is fired')

Assuming that the features are defined in heating.feature, these steps in steps.py, and the microwave in
microwave.yaml, then sismic-bdd can be used as follows:

$ sismic-bdd microwave.yaml --steps steps.py --features heating.feature

Feature: Cook food # heating.feature:1

[...]

1 feature passed, 0 failed, 0 skipped
5 scenarios passed, 0 failed, 0 skipped
21 steps passed, 0 failed, 0 skipped, 0 undefined
Took 0m0.040s

38 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None

Sismic Documentation, Release 1.1.2

2.8 Dealing with time

It is quite usual in statecharts to find notations such as “after 30 seconds”, often expressed as specific events on a
transition. Sismic does not support the use of these special events, and proposes instead to deal with time by making
use of some specifics provided by its interpreter and the default Python code evaluator.

Every interpreter has an internal clock whose value is initially set to 0. This internal clock is exposed by by the time
property of an Interpreter. This property allows one to execute a statechart using simulated time. In other word,
the value of this property won’t change, unless you set it by yourself.

The built-in Python code evaluator allows one to make use of after(...), idle(...) in guards or contracts.
These two Boolean predicates can be used to automatically compare the current time (as exposed by the interpreter)
with a predefined value that depends on the state in which the predicate is used. For instance, after(x) will evaluate
to True if the current time of the interpreter is at least x units greater than the time when the state using this predicate
(or source state in the case of a transition) was entered. Similarly, idle(x) evaluates to True if no transition was
triggered during the last x units of time.

Note that while this property was initially designed to manage simulate time, it can also be used to synchronise the
internal clock of an interpreter with the real time, i.e. wall-clock time.

2.8.1 Simulated time

The following example illustrates a statechart modeling the behavior of a simple elevator. If the elevator is sent to the
4th floor then, according to the YAML definition of this statechart, the elevator should automatically go back to the
ground floor after 10 seconds.

- target: doorsClosed
guard: after(10) and current > 0
action: destination = 0

Rather than waiting for 10 seconds, one can simulate this. First, one should load the statechart and initialize the
interpreter:

from sismic.io import import_from_yaml
from sismic.interpreter import Interpreter, Event

statechart = import_from_yaml(filepath='examples/elevator/elevator.yaml')

interpreter = Interpreter(statechart)

The internal clock of our interpreter is 0. This is, interpreter.time == 0 holds. We now ask our elevator to
go to the 4th floor.

interpreter.queue(Event('floorSelected', floor=4))
interpreter.execute()

The elevator should now be on the 4th floor. We inform the interpreter that 2 seconds have elapsed:

interpreter.time += 2
print(interpreter.execute())

The output should be an empty list []. Of course, nothing happened since the condition after(10) is not satisfied
yet. We now inform the interpreter that 8 additional seconds have elapsed.

interpreter.time += 8
print(interpreter.execute())

2.8. Dealing with time 39

Sismic Documentation, Release 1.1.2

The output now contains a list of steps, from which we can see that the elevator has moved down to the ground floor.
We can check the current floor:

print(interpreter.context.get('current'))

This displays 0.

2.8.2 Real or wall-clock time

If a statechart needs to be aware of a real clock, the simplest way to achieve this is by using the time.time()
function of Python. In a nutshell, the idea is to synchronize interpreter.time with a real clock. Let us first
initialize an interpreter using one of our statechart example, the elevator:

from sismic.io import import_from_yaml
from sismic.interpreter import Interpreter, Event

statechart = import_from_yaml(filepath='examples/elevator/elevator.yaml')

interpreter = Interpreter(statechart)

The interpreter initially sets its clock to 0. As we are interested in a real-time simulation of the statechart, we need to
set the internal clock of our interpreter. We import from time a real clock, and store its value into a starttime
variable.

import time
starttime = time.time()

We can now execute the statechart by sending a floorSelected event, and wait for the output. For our example,
we first ask the statechart to send to elevator to the 4th floor.

interpreter.queue(Event('floorSelected', floor=4))
interpreter.execute()
print('Current floor:', interpreter.context.get('current'))
print('Current time:', interpreter.time)

At this point, the elevator is on the 4th floor and is waiting for another input event. The internal clock value is still 0.

Current floor: 4
Current time: 0

We should inform our interpreter of the new current time. Of course, as our interpreter follows a discrete simulation,
nothing really happens until we call execute() or execute_once().

interpreter.time = time.time() - starttime
Does nothing if (time.time() - starttime) is less than 10!
interpreter.execute()

Assuming you quickly wrote these lines of code, nothing happened. But if you wait a little bit, and update the clock
again, it should move the elevator to the ground floor.

interpreter.time = time.time() - starttime
interpreter.execute()

And voilà!

40 Chapter 2. Features

https://docs.python.org/3.4/library/time.html#time.time
https://docs.python.org/3.4/library/time.html#module-time

Sismic Documentation, Release 1.1.2

As it is not very convenient to manually set the clock each time you want to execute something, it is best to put it
in a loop. To avoid the use of a starttime variable, you can set the initial time of an interpreter right after its
initialization. This is illustrated in the following example.

from sismic.io import import_from_yaml
from sismic.interpreter import Interpreter, import Event

import time

Load statechart and create an interpreter
statechart = import_from_yaml(filepath='examples/elevator.yaml')

Set the initial time
interpreter = Interpreter(statechart)
interpreter.time = time.time()

Send an initial event
interpreter.queue(Event('floorSelected', floor=4))

while not interpreter.final:
interpreter.time = time.time()
if interpreter.execute():

print('something happened at time {}'.format(interpreter.time))

time.sleep(0.5) # 500ms

Here, we called the sleep() function to slow down the loop (optional). The output should look like:

something happened at time 1450383083.9943285
something happened at time 1450383093.9920669

As our statechart does not define any way to reach a final configuration, the not interpreter.final condition
always holds, and the execution needs to be interrupted manually.

2.8.3 Asynchronous execution

Notice from previous example that using a loop makes it impossible to send events to the interpreter. For convenience,
sismic provides a sismic.helpers.run_in_background() function that run an interpreter in a thread, and
does the job of synchronizing the clock for you.

sismic.helpers.run_in_background(interpreter, delay=0.05, callback=None)
Run given interpreter in background. The time is updated according to time.time() - starttime. The interpreter is
ran until it reaches a final configuration. You can manually stop the thread using the added stop of the returned
Thread object. This is for convenience only and should be avoided, because a call to stop puts the interpreter in
an empty (and thus final) configuration, without properly leaving the active states.

Parameters

• interpreter (Interpreter) – an interpreter

• delay (float) – delay between each call to execute()

• callback (Optional[Callable[[List[MacroStep]], Any]]) – a function that ac-
cepts the result of execute.

Return type Thread

Returns started thread (instance of threading.Thread)

2.8. Dealing with time 41

https://docs.python.org/3.4/library/time.html#time.sleep
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/threading.html#threading.Thread

Sismic Documentation, Release 1.1.2

Note: An optional argument callback can be passed to run_in_background(). It must be a callable that
accepts the (possibly empty) list of MacroStep returned by the underlying call to execute().

2.9 Integrate statecharts into your code

Sismic provides several ways to integrate executable statecharts into your Python source code. The simplest way is to
directly embed the entire code in the statechart’s description. This was illustrated with the Elevator example in Include
code in statecharts. Its code is part of the YAML file of the statechart, and interpreted by Sismic during the statechart’s
execution.

In order to make a statechart communicate with the source code contained in the environment in which it is executed,
there are basically two approaches:

1. The statechart sends events to, or receives external events from the environment.

2. The environment stores shared objects in the statechart’s initial context, and the statechart calls operations on
these objects and/or accesses the variables contained in it.

Of course, one could also use a hybrid approach, combining ideas from the three approches above.

2.9.1 Running example

In this document, we will present the main differences between the two approaches, on the basis of a simple example
of a Graphical User Interface (GUI) whose behaviour is defined by a statechart. All the source code and YAML files
for this example, discussed in more detail below, is available in the docs/examples directory of Sismic’s repository.

The example represents a simple stopwatch, i.e., a timer than can be started, stopped and reset. It also provides a split
time feature and a display of the elapsed time. A button-controlled GUI of such a stopwatch looks as follows (inactive
buttons are greyed out):

Essentially, the stopwatch simply displays a value, representing the elapsed time (expressed in seconds), which is
initially 0. By clicking on the start button the stopwatch starts running. When clicking on stop, the stopwatch stops
running. By using split, the time being displayed is temporarily frozen, although the stopwatch continues to run.
Clicking on unsplit while continue to display the actual elapsed time. reset will restart from 0, and quit will quit the
stopwatch application.

The idea is that the buttons will trigger state changes and actions carried out by an underlying statechart. Taking
abstraction of the concrete implementation, the statechart would essentially look as follows, with one main active state
containing two parallel substates timer and display.

42 Chapter 2. Features

Sismic Documentation, Release 1.1.2

2.9.2 Controlling a statechart from within the environment

Let us illustrate how to control a statechart through source code that executes in the environment containing the
statechart. The statechart’s behaviour is triggered by external events sent to it by the source code each time one of the
buttons in the GUI is pressed. Conversely, the statechart itself can send events back to the source code to update its
display.

This statechart looks as follows:

2.9. Integrate statecharts into your code 43

Sismic Documentation, Release 1.1.2

Here is the YAML file containing the textual description of this statechart:

statechart:
name: Stopwatch
description: |
A simple stopwatch which support "start", "stop", "split", and "reset".
These features are triggered respectively using "start", "stop", "split", and

→˓"reset".

The stopwatch sends an "refresh" event each time the display is updated.
The value to display is attached to the event under the key "time".

The statechart is composed of two parallel regions:
- A "timer" region which increments "elapsed_time" if timer is running
- A "display" region that refreshes the display according to the actual time/lap

→˓time feature

preamble: elapsed_time = 0
root state:
name: active
parallel states:

- name: timer
initial: stopped
transitions:
- event: reset
action: elapsed_time = 0

states:

(continues on next page)

44 Chapter 2. Features

Sismic Documentation, Release 1.1.2

(continued from previous page)

- name: running
transitions:
- event: stop
target: stopped

- guard: after(1)
target: running
action: elapsed_time += 1

- name: stopped
transitions:
- event: start
target: running

- name: display
initial: actual time
states:
- name: actual time

transitions:
- guard: after(0.2)
target: actual time
action: |
send('refresh', time=elapsed_time)

- event: split
target: lap time

- name: lap time
transitions:
- event: split
target: actual time

We observe that the statechart contains an elapsed_time variable, that is updated every second while the stopwatch
is in the running state. The statechart will modify its behaviour by receiving start, stop, reset and split events from its
external environment. In parallel to this, every 100 milliseconds, the display state of the statechart sends a refresh event
(parameterised by the time variable containing the elapsed_time value) back to its external environment. In the
lap time state (reached through a split event) , this regular refreshing is stopped until a new split event is received.

The source code (shown below) that defines the GUI of the stopwatch, and that controls the statechart by sending
it events, is implemented using the Tkinter library. Each button of the GUI is bound to a Python method in
which the corresponding event is created and sent to the statechart. The statechart is bound to the source code by
defining a new Interpreter that contains the parsed YAML specification, and using the bind() method. The
event_handler passed to it allows the Python source code to receive events back from the statechart. In particular,
the w_timer field of the GUI will be updated with a new value of the time whenever the statechart sends a refresh
event. The run method, which is put in Tk’s mainloop, updates the internal clock of the interpreter and executes the
interpreter.

import time
import tkinter as tk

from sismic.interpreter import Interpreter, Event
from sismic.io import import_from_yaml

The two following lines are NOT needed in a typical environment.
These lines make sismic available in our testing environment
import sys
sys.path.append('../../..')

(continues on next page)

2.9. Integrate statecharts into your code 45

Sismic Documentation, Release 1.1.2

(continued from previous page)

Create a tiny GUI
class StopwatchApplication(tk.Frame):

def __init__(self, master=None):
super().__init__(master)

Initialize widgets
self.create_widgets()

Create a Stopwatch interpreter
with open('stopwatch.yaml') as f:

statechart = import_from_yaml(f)
self.interpreter = Interpreter(statechart)
self.interpreter.time = time.time()

Bind interpreter events to the GUI
self.interpreter.bind(self.event_handler)

Run the interpreter
self.run()

def run(self):
This function does essentially the same job than ``sismic.interpreter.run_

→˓in_background``
but uses Tkinter's mainloop instead of a Thread, which is more adequate.

Update internal clock and execute interpreter
self.interpreter.time = time.time()
self.interpreter.execute()

Queue a call every 100ms on tk's mainloop
self.after(100, self.run)

Update the widget that contains the list of active states.
self.w_states['text'] = 'active states: ' + ', '.join(self.interpreter.

→˓configuration)

def create_widgets(self):
self.pack()

Add buttons
self.w_btn_start = tk.Button(self, text='start', command=self._start)
self.w_btn_stop = tk.Button(self, text='stop', command=self._stop)
self.w_btn_split = tk.Button(self, text='split', command=self._split)
self.w_btn_unsplit = tk.Button(self, text='unsplit', command=self._unsplit)
self.w_btn_reset = tk.Button(self, text='reset', command=self._reset)
self.w_btn_quit = tk.Button(self, text='quit', command=self._quit)

Initial button states
self.w_btn_stop['state'] = tk.DISABLED
self.w_btn_unsplit['state'] = tk.DISABLED

Pack
self.w_btn_start.pack(side=tk.LEFT,)
self.w_btn_stop.pack(side=tk.LEFT,)
self.w_btn_split.pack(side=tk.LEFT,)
self.w_btn_unsplit.pack(side=tk.LEFT,)

(continues on next page)

46 Chapter 2. Features

Sismic Documentation, Release 1.1.2

(continued from previous page)

self.w_btn_reset.pack(side=tk.LEFT,)
self.w_btn_quit.pack(side=tk.LEFT,)

Active states label
self.w_states = tk.Label(root)
self.w_states.pack(side=tk.BOTTOM, fill=tk.X)

Timer label
self.w_timer = tk.Label(root, font=("Helvetica", 16), pady=5)
self.w_timer.pack(side=tk.BOTTOM, fill=tk.X)

def event_handler(self, event):
Update text widget when timer value is updated
if event.name == 'refresh':

self.w_timer['text'] = event.time

def _start(self):
self.interpreter.queue(Event('start'))
self.w_btn_start['state'] = tk.DISABLED
self.w_btn_stop['state'] = tk.NORMAL

def _stop(self):
self.interpreter.queue(Event('stop'))
self.w_btn_start['state'] = tk.NORMAL
self.w_btn_stop['state'] = tk.DISABLED

def _reset(self):
self.interpreter.queue(Event('reset'))

def _split(self):
self.interpreter.queue(Event('split'))
self.w_btn_split['state'] = tk.DISABLED
self.w_btn_unsplit['state'] = tk.NORMAL

def _unsplit(self):
self.interpreter.queue(Event('split'))
self.w_btn_split['state'] = tk.NORMAL
self.w_btn_unsplit['state'] = tk.DISABLED

def _quit(self):
self.master.destroy()

if __name__ == '__main__':
Create GUI
root = tk.Tk()
root.wm_title('StopWatch')
app = StopwatchApplication(master=root)

app.mainloop()

2.9.3 Controlling the environment from within the statechart

In this second example, we basically reverse the idea: now the Python code that resides in the environment contains the
logic (e.g., the elapsed_time variable), and this code is exposed to, and controlled by, a statechart that represents

2.9. Integrate statecharts into your code 47

Sismic Documentation, Release 1.1.2

the main loop of the program and calls the necessary methods in the source code. These method calls are associated
to actions on the statechart’s transitions. With this solution, the statechart is no longer a black box, since it needs to be
aware of the source code, in particular the methods it needs to call in this code.

An example of the Python code that is controlled by the statechart is given below:

class Stopwatch:
def __init__(self):

self.elapsed_time = 0
self.split_time = 0
self.is_split = False
self.running = False

def start(self):
Start internal timer
self.running = True

def stop(self):
Stop internal timer
self.running = False

def reset(self):
Reset internal timer
self.elapsed_time = 0

def split(self):
Split time
if not self.is_split:

self.is_split = True
self.split_time = self.elapsed_time

def unsplit(self):
Unsplit time
if self.is_split:

self.is_split = False

def display(self):
Return the value to display
if self.is_split:

return int(self.split_time)
else:

return int(self.elapsed_time)

def update(self, delta):
Update internal timer of ``delta`` seconds
if self.running:

self.elapsed_time += delta

The statechart expects such a Stopwatch instance to be created and provided in its initial context.
Recall that an Interpreter accepts an optional initial_context parameter. In this example,
initial_context={'stopwatch': Stopwatch()}.

The statechart is simpler than in the previous example: one parallel region handles the running status of the stopwatch,
and a second one handles its split features.

48 Chapter 2. Features

Sismic Documentation, Release 1.1.2

statechart:
name: Stopwatch
description: |
A simple stopwatch which support "start", "stop", "split", and "reset".
These features are triggered respectively using "start", "stop", "split", and

→˓"reset".

The stopwatch expects a "stopwatch" object in its initial context.
This object should support the following methods: "start", "stop", "split", "reset

→˓", and "unsplit".
root state:
name: active
parallel states:

- name: timer
initial: stopped
transitions:
- event: reset

action: stopwatch.reset()
states:
- name: running
transitions:
- event: stop
target: stopped
action: stopwatch.stop()

- name: stopped
transitions:
- event: start
target: running
action: stopwatch.start()

- name: display

(continues on next page)

2.9. Integrate statecharts into your code 49

Sismic Documentation, Release 1.1.2

(continued from previous page)

initial: actual time
states:
- name: actual time
transitions:
- event: split
target: lap time
action: stopwatch.split()

- name: lap time
transitions:
- event: split
target: actual time
action: stopwatch.unsplit()

The Python code of the GUI no longer needs to listen to the events sent by the interpreter. It should, of course,
continue to send events (corresponding to button presses) to the statechart using send. The binding between the
statechart and the GUI is now achieved differently, by simply passing the stopwatch object to the Interpreter
as its initial_context.

import time
import tkinter as tk

from sismic.interpreter import Interpreter, Event
from sismic.io import import_from_yaml
from stopwatch import Stopwatch

The two following lines are NOT needed in a typical environment.
These lines make sismic available in our testing environment
import sys
sys.path.append('../../..')

Create a tiny GUI
class StopwatchApplication(tk.Frame):

def __init__(self, master=None):
super().__init__(master)

Initialize widgets
self.create_widgets()

Create a Stopwatch interpreter
with open('stopwatch_external.yaml') as f:

statechart = import_from_yaml(f)

Create a stopwatch object and pass it to the interpreter
self.stopwatch = Stopwatch()
self.interpreter = Interpreter(statechart, initial_context={'stopwatch': self.

→˓stopwatch})
self.interpreter.time = time.time()

Run the interpreter
self.run()

Update the stopwatch every 100ms

(continues on next page)

50 Chapter 2. Features

Sismic Documentation, Release 1.1.2

(continued from previous page)

self.after(100, self.update_stopwatch)

def update_stopwatch(self):
self.stopwatch.update(delta=0.1)
self.after(100, self.update_stopwatch)

Update timer label
self.w_timer['text'] = self.stopwatch.display()

def run(self):
Queue a call every 100ms on tk's mainloop
self.interpreter.execute()
self.after(100, self.run)
self.w_states['text'] = 'active states: ' + ', '.join(self.interpreter.

→˓configuration)

def create_widgets(self):
self.pack()

Add buttons
self.w_btn_start = tk.Button(self, text='start', command=self._start)
self.w_btn_stop = tk.Button(self, text='stop', command=self._stop)
self.w_btn_split = tk.Button(self, text='split', command=self._split)
self.w_btn_unsplit = tk.Button(self, text='unsplit', command=self._unsplit)
self.w_btn_reset = tk.Button(self, text='reset', command=self._reset)
self.w_btn_quit = tk.Button(self, text='quit', command=self._quit)

Initial button states
self.w_btn_stop['state'] = tk.DISABLED
self.w_btn_unsplit['state'] = tk.DISABLED

Pack
self.w_btn_start.pack(side=tk.LEFT,)
self.w_btn_stop.pack(side=tk.LEFT,)
self.w_btn_split.pack(side=tk.LEFT,)
self.w_btn_unsplit.pack(side=tk.LEFT,)
self.w_btn_reset.pack(side=tk.LEFT,)
self.w_btn_quit.pack(side=tk.LEFT,)

Active states label
self.w_states = tk.Label(root)
self.w_states.pack(side=tk.BOTTOM, fill=tk.X)

Timer label
self.w_timer = tk.Label(root, font=("Helvetica", 16), pady=5)
self.w_timer.pack(side=tk.BOTTOM, fill=tk.X)

def _start(self):
self.interpreter.queue(Event('start'))
self.w_btn_start['state'] = tk.DISABLED
self.w_btn_stop['state'] = tk.NORMAL

def _stop(self):
self.interpreter.queue(Event('stop'))
self.w_btn_start['state'] = tk.NORMAL
self.w_btn_stop['state'] = tk.DISABLED

(continues on next page)

2.9. Integrate statecharts into your code 51

Sismic Documentation, Release 1.1.2

(continued from previous page)

def _reset(self):
self.interpreter.queue(Event('reset'))

def _split(self):
self.interpreter.queue(Event('split'))
self.w_btn_split['state'] = tk.DISABLED
self.w_btn_unsplit['state'] = tk.NORMAL

def _unsplit(self):
self.interpreter.queue(Event('split'))
self.w_btn_split['state'] = tk.NORMAL
self.w_btn_unsplit['state'] = tk.DISABLED

def _quit(self):
self.master.destroy()

if __name__ == '__main__':
Create GUI
root = tk.Tk()
root.wm_title('StopWatch (external)')
app = StopwatchApplication(master=root)

app.mainloop()

2.10 Communication between statecharts

It is not unusual to have to deal with multiple distinct components in which the behavior of a component is driven
by things that happen in the other components. One can model such a situation using a single statechart with
parallel states, or by plugging several statecharts into one main statechart (see sismic.model.Statechart.
copy_from_statechart()). The communication and synchronization between the components can be done
either by using active(state_name) in guards, or by sending internal events that address other components.

However, we believe that this approach is not very convenient:

• all the components must be defined in a single statechart;

• state name collision could occur;

• components must share a single execution context;

• component composition is not easy to achieve

• . . .

Sismic allows to define multiple components in multiple statecharts, and brings a way for those statecharts to commu-
nicate and synchronize via events.

2.10.1 Binding statecharts

Every instance of Interpreter exposes a bind() method which allows to bind statecharts.

Interpreter.bind(interpreter_or_callable)
Bind an interpreter or a callable to the current interpreter. Each time an internal event is sent by this interpreter,
any bound object will be called with the same event. If interpreter_or_callable is an Interpreter instance, its
queue method is called. This is, if i1 and i2 are interpreters, i1.bind(i2) is equivalent to i1.bind(i2.queue).

52 Chapter 2. Features

Sismic Documentation, Release 1.1.2

Parameters interpreter_or_callable (Union[Interpreter, Callable[[Event],
Any]]) – interpreter or callable to bind

Return type None

Returns self so it can be chained

When an interpreter interpreter_1 is bound to an interpreter interpreter_2 using interpreter_1.
bind(interpreter_2), the internal events that are sent by interpreter_1 are automatically propagated as
external events to interpreter_2. The binding is not restricted to only two statecharts. For example, assume we
have three instances of Interpreter:

assert isinstance(interpreter_1, Interpreter)
assert isinstance(interpreter_2, Interpreter)
assert isinstance(interpreter_3, Interpreter)

We define a bidirectional communication between the two first interpreters:

interpreter_1.bind(interpreter_2)
interpreter_2.bind(interpreter_1)

We also bind the third interpreters with the two first ones.

interpreter_3.bind(interpreter_1)
interpreter_3.bind(interpreter_2)

When an internal event is sent by an interpreter, the bound interpreters also receive this event as an external event.
In the last example, when an internal event is sent by interpreter_3, then a corresponding external event is sent
both to interpreter_1 and interpreter_2.

Note: Practically, unless you subclassed Interpreter, the only difference between internal and external events
are the priority order in which they are processed by the interpreter.

from sismic.interpreter import InternalEvent, Event

Manually create and raise an internal event
interpreter_3._raise_event(InternalEvent('test'))

print('Events for interpreter_1:', interpreter_1._external_events.pop())
print('Events for interpreter_2:', interpreter_2._external_events.pop())
print('Events for interpreter_3:', interpreter_3._internal_events.pop())

Events for interpreter_1: Event('test')
Events for interpreter_2: Event('test')
Events for interpreter_3: InternalEvent('test')

2.10.2 Example of communicating statecharts

Consider our running example, the elevator statechart. This statechart expects to receive floorSelected events (with
a floor parameter representing the selected floor). The statechart operates autonomously, provided that we send such
events.

Let us define a new statechart that models a panel of buttons for our elevator. For example, we consider that our panel
has 4 buttons numbered 0 to 3.

2.10. Communication between statecharts 53

https://docs.python.org/3.4/library/constants.html#None

Sismic Documentation, Release 1.1.2

statechart:
name: Elevator buttons
description: |
Buttons that remotely control the elevator.

root state:
name: active
parallel states:

- name: button_0
transitions:
- event: button_0_pushed

action: send('floorSelected', floor= 0)
- name: button_1

transitions:
- event: button_1_pushed
action: send('floorSelected', floor= 1)

- name: button_2
transitions:
- event: button_2_pushed
action: send('floorSelected', floor= 2)

- name: button_3
transitions:
- event: button_3_pushed
action: send('floorSelected', floor= 3)

As you can see in the YAML version of this statechart, the panel expects an event for each button: button_0_pushed,
button_1_pushed, button_2_pushed and button_3_pushed. Each of those event causes the execution of a transition
which, in turn, creates and sends a floorSelected event. The floor parameter of this event corresponds to the button
number.

We bind our panel with our elevator, such that the panel can control the elevator:

from sismic.io import import_from_yaml
from sismic.interpreter import Interpreter, Event, InternalEvent

elevator = Interpreter(import_from_yaml(filepath='examples/elevator/elevator.yaml'))
buttons = Interpreter(import_from_yaml(filepath='examples/elevator/elevator_buttons.
→˓yaml'))

Elevator will receive events from buttons
buttons.bind(elevator)

Events that are sent to buttons are not propagated, but events that are sent by buttons are automatically propa-
gated to elevator:

print('Awaiting events in buttons:', list(buttons._external_events)) # Empty
buttons.queue(Event('button_2_pushed'))

print('Awaiting events in buttons:', list(buttons._external_events)) # External event

buttons.execute(max_steps=2) # (1) initialize buttons, and (2) consume button_2_
→˓pushed
print('Awaiting events in buttons:', list(buttons._internal_events))
print('Awaiting events in elevator:', list(elevator._external_events))

Awaiting events in buttons: []
Awaiting events in buttons: [Event('button_2_pushed')]
Awaiting events in buttons: [InternalEvent('floorSelected', floor=2)]

(continues on next page)

54 Chapter 2. Features

Sismic Documentation, Release 1.1.2

(continued from previous page)

Awaiting events in elevator: [Event('floorSelected', floor=2)]

The execution of bound statecharts does not differ from the execution of unbound statecharts:

elevator.execute()
print('Current floor:', elevator.context.get('current'))

Current floor: 2

2.11 Extensions for Sismic

Sismic can be quite easily extended to support other semantics, other code evaluators or even other features. The
sismic-extensions repository already provides some extensions. Feel free to contact us if you developed an extension
you would want to be listed here.

2.11.1 sismic-amola

This extension provides support to import and export statechart written using AMOLA. This allows statecharts to be
created, edited and displayed with the ASEME IDE. It exposes import_from_amola and export_to_amola
based on the bundled Ecore meta-model (see amola.ecore).

Download: https://github.com/AlexandreDecan/sismic-extensions/tree/master/sismic_amola

2.11.2 sismic-semantics

This extension contains two variations around the default interpreter: one supporting outer-first/source-state semantics,
and a second giving priority to transitions with event (instead of eventless transitions).

The extension provides two new interpreter classes: OuterFirstInterpreter and
EventFirstInterpreter. These two interpreters can be combined together, thanks to Python multiple
inheritance.

Download: https://github.com/AlexandreDecan/sismic-extensions/tree/master/sismic_semantics

2.12 Credits

2.12.1 Development Lead

• Alexandre Decan

2.12.2 Contributors

• Tom Mens

• Mathieu Goeminne

• Ali Parsai

• Nikos Spanoudakis

2.11. Extensions for Sismic 55

https://github.com/AlexandreDecan/sismic-extensions
http://aseme.tuc.gr/
https://github.com/AlexandreDecan/sismic-extensions/tree/master/sismic_amola
https://github.com/AlexandreDecan/sismic-extensions/tree/master/sismic_semantics

Sismic Documentation, Release 1.1.2

2.13 Changelog

2.13.1 1.1.2 (2018-05-09)

• (Fixed) Interpreter instances can be serialized using pickle (#66).

2.13.2 1.1.1 (2018-04-26)

• (Fixed) Whitespaces in event parameters used in BDD steps are stripped before they are evaluated.

2.13.3 1.1.0 (2018-04-23)

• (Fixed) Final states remain in the active configuration unless they are all children of the root state. In this case,
statechart execution is stopped. Previously, if all leaf states of the active configuration were final states, the
execution stopped even if these final states were nested in an orthogonal or compound state. The corrected
behavior strictly adheres to SCXML 1.0 semantics. This could be a backward incompatible change if you
explicitly relied on the previously wrong behaviour.

• (Added) Interpreter._select_event accepts an additional parameter consume (default to True) that
can be used to select an event without consuming it.

• (Added) Documentation for extensions, and two (not included in Sismic!) extensions providing import/export
with AMOLA, and new semantics for the interpreter.

2.13.4 1.0.1 (2018-04-18)

• (Fixed) BDD steps that involve a state raise a StatechartError if state does not exist. This prevents state
X is active (and its variants) to fail, e.g., because X is misspelled.

2.13.5 1.0.0 (2018-04-11)

After more than two years of development, Sismic is stable enough to be released in version 1.0.0. Consequently,
Sismic will adhere to semantic versioning (see semver.org), meaning that breaking changes will only occur in major
releases, backward compatible changes in minor releases, and bug fixes in patches.

2.13.6 0.26.9 (2018-04-03)

• (Fixed) based_on for export_to_plantuml correctly takes into account states whose name contains
whitespaces.

• (Fixed) export_to_plantuml properly exports transition with no event, no guard and no action.

• (Changed) export_to_yaml does not add quotes by default.

2.13.7 0.26.8 (2018-03-23)

• (Added) import_from_yaml accepts a filepath argument.

56 Chapter 2. Features

https://github.com/AlexandreDecan/sismic/issues/66
https://semver.org/

Sismic Documentation, Release 1.1.2

• (Added) based_on and based_on_filepath parameters for export_to_plantuml so a previously
generated PlantUML file can be used as a basis for a new one (including its modifications related to the direction
and length of transitions).

2.13.8 0.26.7 (2018-03-21)

• (Removed) Nested context (ie. nested variable scopes) for the Python code evaluator.

• (Fixed) BDD step expression {expression} holds.

2.13.9 0.26.6 (2018-03-17)

• (Changed) Export to PlantUML uses short arrows by default.

• (Changed) Many improvements related to the transitions when using export_to_plantuml.

2.13.10 0.26.4 (2018-03-16)

• (Added) sismic.bdd.execute_bdd can be used to execute BDD tests programmatically.

• (Added) sismic.bdd.__main__ is the CLI interface for sismic-behave and can now be executed using
python -m sismic.bdd too if sismic is available but not installed.

• (Added) Many tests for BDD steps.

• (Changed) Statechart.copy_from_statechart has only its first argument that can be provided by
position. The remaining ones (esp. source and replace) should be provided by name.

• (Fixed) Sismic requires behave >= 1.6.0.

• (Fixed) Older versions of typing do not contain Deque.

• (Removed) sismic.bdd.cli.execute_behave, subsumed by sismic.bdd.execute_bdd.

2.13.11 0.26.3 (2018-03-15)

• (Added) sismic.bdd exposes sismic.bdd.cli.execute_behave function to programmatically use
sismic-bdd.

• (Changed) execute_behave function has only two required parameters, and the remaining ones (that have
default values) can only be set by name, not by position.

• (Changed) action_alias and assertion_alias of module sismic.bdd.steps are renamed to
map_action and map_assertion and are directly available from sismic.bdd.

2.13.12 0.26.2 (2018-03-15)

• (Fixed) Step Given/when I repeat “{step}” {repeat} times requires step to be provided with no Gherkin keyword.
The current keyword (either given or when) is automatically used.

• (Fixed) Escape expression in then expression “{expression}” holds and its negative counterpart.

2.13. Changelog 57

Sismic Documentation, Release 1.1.2

2.13.13 0.26.0 (2018-03-15)

Sismic support for BDD was completely rewritten. The CLI is now sismic-bdd, pointing to the cli submodule of
the newly created sismic.bdd module. All steps that are related to Sismic internals were removed, and only steps
that manipulate the statechart are kept. Check the documentation and sismic.bdd.steps for more information.
Execution semantics have slightly changed but shouldn’t have any impact when running BDD tests. Predefined steps
can be easily extended thanks to the action_alias and assertion_alias helpers. See documentation for
more details.

• (Changed) sismic-behave CLI is now sismic-bdd.

• (Removed) --coverage option from sismic-behave CLI.

• (Changed) Rename sismic.testing to sismic.bdd, and sismic.testing.behave to sismic.
bdd.cli.

• (Changed) A new list of predefined steps, available in sismic.bdd.steps, see documentation.

• (Changed) A “when” step is now required before any “then” step. The “then” steps assert on what happens
during the “when” steps, and not on the whole execution or the last step as before.

• (Added) sismic.bdd.steps provides action_alias and assertion_alias to make defining new
steps easy.

• (Changed) BDD tests are directly executed by pytest (instead of being triggered by Travis-CI).

Other changes:

• (Changed) Interpreter.bind_property becomes Interpreter.
bind_property_statechart.

• (Changed) helpers.coverage_from_trace returns a dict with “entered states”, “exited states” and “pro-
cessed transitions”.

• (Removed) Unused io.text.

2.13.14 0.25.3 (2018-03-13)

• (Fixed) export_to_dict (and by extension, export_to_yaml) didn’t export transition contracts.

• (Changed) All the tests are now written using pytest instead of unittest.

2.13.15 0.25.2 (2018-03-11)

• (Added) Make Event, InternalEvent and MetaEvent available from interpreter as well.

• (Changed) Move helpers from sismic.interpreter.helpers to sismic.helpers.

• (Removed) Remove module stories, not really required anymore.

2.13.16 0.25.1 (2018-03-09)

• (Added) Full equality comparison (__eq__) for states and transitions (including all relevant attributes).

• (Added) Interpreter.queue also accepts an event name in addition to an Event instance.

• (Added) Interpreter.queue accepts more than one event (or name) at once.

• (Changed) Evaluator.execute_onentry and execute_onexit become execute_on_entry and
execute_on_exit.

58 Chapter 2. Features

Sismic Documentation, Release 1.1.2

• (Changed) Many type annotations were added or fixed.

• (Changed) Interpreter.bind can no longer be chained.

2.13.17 0.25.0 (2018-03-09)

Property statecharts do not require anymore the use of an ExecutionWatcher and are now directly supported
by the interpreter. The documentation contains a new page, Monitoring properties, that explains how to monitor
properties at runtime and provides some examples of property statecharts.

• (Added) Property statechart can be bound to an interpreter with interpreter.bound_property method,
that accepts either a Statechart or an Interpreter instance.

• (Added) A PropertyStatechartError that is raised when a property statechart reaches a final state.

• (Added) A MetaEvent class to represent meta-events sent by the interpreter for property statechart checking.

• (Added) Interpreter._notify_property(event_name, **kwargs) and Interpreter.
_check_properties(macro_step) that are used internally to respectively send meta-events to bound
properties, and to check these properties.

• (Changed) Interpreter.raise_event is now Interpreter._raise_event as it’s not supposed
to be part of the public API.

• (Removed) sismic.testing module was removed (including the ExecutionWatcher and
TestStoryFromTrace).

• (Removed) BDD steps related to the execution watcher, in sismic.testing.steps.

• (Fixed) Interpreter.time cannot be set to a lower value than the current one (ie. time is monotonic).

• (Fixed) A statechart preamble cannot be used to send events.

2.13.18 0.24.3 (2018-03-08)

• (Fixed) ExecutionWatcher.stop() was not called at the end of the execution when sismic-behave
was called with --properties.

• (Removed) Unused dependency on pyparsing.

2.13.19 0.24.2 (2018-02-27)

• (Added) sismic.io contains an export_to_plantuml function to export a statechart to PlantUML.

• (Added) sismic-behave accepts a --properties argument, pointing to a list of YAML files containing
property statecharts that will be checked during execution (in a fail fast mode).

• (Changed) sismic.io.export_to_yaml accepts an additional filepath argument.

• (Fixed) Whitespaces in strings are trimmed when using import_from_dict (and hence, using
import_from_yaml).

2.13.20 0.23.1 (2018-02-20)

• (Fixed) An exited state is removed from the current configuration before its postconditions are checked.

• (Removed) Sequential conditions that were introduced in 0.22.0.

2.13. Changelog 59

Sismic Documentation, Release 1.1.2

2.13.21 0.22.11 (2017-01-12)

• (Fixed) Path error when using sismic-behave on Windows.

2.13.22 0.22.10 (2016-11-25)

• (Added) A --debug-on-error parameter for sismic-behave.

2.13.23 0.22.9 (2016-11-25)

• (Fixed) Behave step “Event x should be fired” now checks that the event was fired during the last execution.

2.13.24 0.22.8 (2016-10-19)

• (Fixed) YAML values like “1”, “1.0”, “yes”, “True” are converted to strings, not to int, float and bool respec-
tively.

• (Changed) ruamel.yaml replaces pyyaml as supported YAML parser.

• (Changed) Use schema instead of pykwalify (which unfortunately freezes its dependencies versions) to
validate (the structure of) YAML files.

• (Changed) import_from_yaml raises StatechartError instead of SchemaError if it cannot validate
given YAML against the predefined schema.

2.13.25 0.22.7 (2016-08-19)

• (Added) A new helper coverage_from_trace that returns coverage information (in absolute numbers)
from a trace.

• (Added) Parameter fails_fast (default is False, behavior preserved) for ExecutionWatcher.
watch_with methods. This parameter allows the watcher to raise an AssertionError as soon as the
added watcher reaches a final configuration.

• (Changed) StateMixin, Transition and Event’s __eq__ method returns a NotImplemented object
if the other object involved in the comparison is not an instance of the same class, meaning that Event('a')
== 1 now raises a NotImplementedError instead of being False.

2.13.26 0.22.6 (2016-08-03)

• (Changed) Event, MacroStep, MicroStep, StateMixin, Transition, Statechart and
Interpreter’s __repr__ returns a valid Python expression.

• (Changed) The context returned by a PythonEvaluator (and thus by the default Interpreter) exhibits
nested variables (the ones that are not defined in the preamble of a statechart). Those variables are prefixed by
the name of the state in which they are declared, to avoid name clashing.

• (Changed) Context variables are sorted in exceptions’.__str__ methods.

60 Chapter 2. Features

Sismic Documentation, Release 1.1.2

2.13.27 0.22.4 (2016-07-08)

• (Added) sismic-behave CLI now accepts a --steps parameter, which is a list of file paths containing the
steps implementation.

• (Added) sismic-behave CLI now accepts a --show-steps parameter, which list the steps (equivalent to
Behave’s overriden --steps parameter).

• (Added) sismic-behave now returns an appropriate exit code.

• (Changed) Reorganisation of docs/examples.

• (Fixed) Coverage data for sismic-behave takes the initialization step into account (regression introduced in
0.21.0).

2.13.28 0.22.3 (2016-07-06)

• (Added) sent and received are also available in preconditions and postconditions.

2.13.29 0.22.2 (2016-07-01)

• (Added) model.Event is now correctly pickled, meaning that Sismic can be used in a multiprocessing envi-
ronment.

2.13.30 0.22.1 (2016-06-29)

• (Added) A event {event_name} should not be fired steps for BDD.

• (Added) Both MicroStep and MacroStep have a list sent_events of events that were sent during the
step.

• (Added) Property statecharts receive a event sent event when an event is sent by the statechart under test.

• (Changed) Events fired from within the statechart are now collected and sent at the end of the current micro
step, instead of being immediately sent.

• (Changed) Invariants and sequential contracts are now evaluated ordered by their state’s depth

2.13.31 0.22.0 (2016-06-13)

• (Added) Support for sequential conditions in contracts (see documentation for more information).

• (Added) Python code evaluator: after and idle are now available in postconditions and invariants.

• (Added) Python code evaluator: received and sent are available in invariants.

• (Added) An Evaluator has now a on_step_starts method which is called at the beginning of each step,
with the current event (if any) being processed.

• (Added) Interpreter.raise_event to send events from within the statechart.

• (Added) A copy_from_statechart method for a Statechart instance that allows to copy (part of) a
statechart into a state.

• (Added) Microwave controller example (see docs/examples/microwave.[yaml|py]).

• (Changed) Events sent by a code evaluator are now returned by the execute_* methods instead of being
automatically added to the interpreter’s queue.

2.13. Changelog 61

Sismic Documentation, Release 1.1.2

• (Changed) Moved run_in_background and log_trace from sismic.interpreter to the newly
added sismic.interpreter.helpers.

• (Changed) Internal API changes: rename self.__x to self._x to avoid (mostly) useless name mangling.

2.13.32 0.21.0 (2016-04-22)

Changes for interpreter.Interpreter class:

• (Removed) _select_eventless_transition which is a special case of _select_transition.

• (Added) _select_event, extracted from execute_once.

• (Added) _filter_transitions, extracted from _select_transition.

• (Changed) _execute_step is now _apply_step.

• (Changed) _compute_stabilization_step is now _create_stabilization_step and accepts
a list of state names

• (Changed) _compute_transitions_step is now _create_steps.

• (Changed) Except for the statechart parameter, all the parameters for Interpreter’s constructor can
now be only provided by name.

• (Fixed) Contracts on a transition are checked (if not explicitly disabled) even if the transition has no action.

• (Fixed) Evaluator.execute_action is called even if the transition has no action.

• (Fixed) States are added/removed from the active configuration as soon as they are entered/exited. Previously,
the configuration was only updated at the end of the step (and could possibly lead to inaccurate results when
using active(name) in a PythonEvaluator).

The default PythonEvaluator class has been completely rewritten:

• (Changed) Code contained in states and/or transitions is now executed with a local context instead of a global
one. The local context of a state is built upon the local context of its parent, and so one until the local context of
the statechart is reached. This should facilitate the use of dummy variables in nested states and transitions.

• (Changed) The code is now compiled (once) before is evaluation/execution. This should increase performance.

• (Changed) The frozen context of a state (ie. __old__) is now computed only if contracts are checked, and
only if at least one invariant or one postcondition exists.

• (Changed) The initial_context parameter of Evaluator’s constructor can now only be provided by
name.

• (Changed) The additional_context parameter of Evaluator._evaluate_code and
Evaluator._execute_code can now only be provided by name.

Miscellaneous:

• (Fixed) Step I load the statechart now executes (once) the statechart in order to put it into a stable initial
configuration (regression introduced in 0.20.0).

2.13.33 0.20.5 (2016-04-14)

• (Added) Type hinting (see PEP484 and mypy-lang project)

62 Chapter 2. Features

Sismic Documentation, Release 1.1.2

2.13.34 0.20.4 (2016-03-25)

• (Changed) Statechart testers are now called property statechart.

• (Changed) Property statechart can describe desirable and undesirable properties.

2.13.35 0.20.3 (2016-03-22)

• (Changed) Step Event x should be fired now checks sent events from the beginning of the test, not only for the
last executed step.

• (Fixed) Internal events that are sequentially sent are now sequentially consumed (and not anymore in reverse
order).

2.13.36 0.20.2 (2016-02-24)

• (Fixed) interpreter.log_trace does not anymore log empty macro step.

2.13.37 0.20.1 (2016-02-19)

• (Added) A step ended event at the end of each step in a tester story.

• (Changed) The name of the events and attributes that are exposed in a tester story has changed. Consult the
documentation for more information.

2.13.38 0.20.0 (2016-02-17)

• (Added) Module interpreter provides a log_trace function that takes an interpreter instance and returns
a (dynamic) list of executed macro steps.

• (Added) Module testing exposes an ExecutionWatcher class that can be used to check statechart prop-
erties with tester statecharts at runtime.

• (Changed) Interpreter.__init__ does not anymore stabilize the statechart. Stabilization is done during
the first call of execute_once.

• (Changed) Story.tell returns a list of MacroStep (the trace) instead of an Interpreter instance.

• (Changed) The name of some attributes of an event in a tester story changes (e.g. event becomes con-
sumed_event, state becomes entered_state or exited_state or source_state or target_state).

• (Removed) Interpreter.trace, as it can be easily obtained from execute_once or using
log_trace.

• (Removed) Interpreter.__init__ does not accept an initial_time parameter.

• (Fixed) Parallel state without children does not any more result into an infinite loop.

2.13.39 0.19.0 (2016-02-10)

• (Added) BDD can now output coverage data using --coverage command-line argument.

• (Changed) The YAML definition of a statechart must use root state: instead of initial state:.

• (Changed) When a contract is evaluated by a PythonEvaluator, __old__.x raises an
AttributeError instead of a KeyError if x does not exist.

2.13. Changelog 63

Sismic Documentation, Release 1.1.2

• (Changed) Behave is now called from Python instead of using a subprocess and thus allows debugging.

2.13.40 0.18.1 (2016-02-03)

• (Added) Support for behavior-driven-development using Behave.

2.13.41 0.17.3 (2016-01-29)

• (Added) An io.text.export_to_tree that returns a textual representation of the states.

• (Changed) Statechart.rename_to does not anymore raise KeyError but exceptions.
StatechartError.

• (Changed) Wheel build should work on Windows

2.13.42 0.17.1 (2016-01-25)

Many backward incompatible changes in this update, especially if you used to work with model. The YAML format
of a statechart also changed, look carefully at the changelog and the documentation.

• (Added) YAML: an history state can declare on entry and on exit.

• (Added) Statechart: new methods to manipulate transitions: transitions_from, transitions_to,
transitions_with, remove_transition and rotate_transition.

• (Added) Statechart: new methods to manipulate states: remove_state, rename_state, move_state,
state_for, parent_for, children_for.

• (Added) Steps: __eq__ for MacroStep and MicroStep.

• (Added) Stories: tell_by_step method for a Story.

• (Added) Testing: teststory_from_trace generates a step event at the beginning of each step.

• (Added) Module: a new exceptions hierarchy (see exceptions module). The new exceptions are used in
place of the old ones (Warning, AssertionError and ValueError).

• (Changed) YAML: uppermost states: should be replaced by initial state: and can contain at most one state.

• (Changed) YAML: uppermost on entry: should be replaced by preamble:.

• (Changed) YAML: initial memory of an history state should be specified using memory instead of initial.

• (Changed) YAML: contracts for a statechart must be declared on its root state.

• (Changed) Statechart: rename StateChart to Statechart.

• (Changed) Statechart: rename events to events_for.

• (Changed) Statechart: states attribute is now Statechart.state_for method.

• (Changed) Statechart: register_state is now add_state.

• (Changed) Statechart: register_transition is now add_transition.

• (Changed) Statechart: now defines a root state.

• (Changed) Statechart: checks done in validate.

• (Changed) Transition: .event is a string instead of an Event instance.

• (Changed) Transition: attributes from_state and to_state are renamed into source and target.

64 Chapter 2. Features

Sismic Documentation, Release 1.1.2

• (Changed) Event: __eq__ takes data attribute into account.

• (Changed) Event: event.foo raises an AttributeError instead of a KeyError if foo is not defined.

• (Changed) State: StateMixin.name is now read-only (use Statechart.rename_state).

• (Changed) State: split HistoryState into a mixin HistoryStateMixin and two concrete subclasses,
namely ShallowHistoryState and DeepHistoryState.

• (Changed) IO: Complete rewrite of io.import_from_yaml to load states before transitions. Parameter
names have changed.

• (Changed) Module: adapt module hierarchy (no visible API change).

• (Changed) Module: expose module content through __all__.

• (Removed) Transition: transitions attribute on TransitionStateMixin, use Statechart.
transitions_for instead.

• (Removed) State: CompositeStateMixin.children, use Statechart.children_for instead.

2.13.43 0.16.0 (2016-01-15)

• (Added) An InternalEvent subclass for model.Event.

• (Added) Interpreter now exposes its statechart.

• (Added) Statechart.validate checks that a targeted compound state declares an initial state.

• (Changed) Interpreter.queue does not accept anymore an internal parameter. Use an instance of
InternalEvent instead (#20).

• (Fixed) Story.story_from_trace now ignores internal events (#19).

• (Fixed) Condition C3 in Statechart.validate.

2.13.44 0.15.0 (2016-01-12)

• (Changed) Rename Interpreter.send to Interpreter.queue (#18).

• (Changed) Rename evaluator module to code.

2.13.45 0.14.3 (2016-01-12)

• (Added) Changelog.

• (Fixed) Missing files in MANIFEST.in

2.14 API Reference

2.14.1 Module bdd

sismic.bdd.execute_bdd(statechart, feature_filepaths, *, step_filepaths=None, prop-
erty_statecharts=None, interpreter_klass=<class ’sis-
mic.interpreter.default.Interpreter’>, debug_on_error=False, be-
have_parameters=None)

Execute BDD tests for a statechart.

2.14. API Reference 65

Sismic Documentation, Release 1.1.2

Parameters

• statechart (Statechart) – statechart to test

• feature_filepaths (List[str]) – list of filepaths to feature files.

• step_filepaths (Optional[List[str]]) – list of filepaths to step definitions.

• property_statecharts (Optional[List[Statechart]]) – list of property stat-
echarts

• interpreter_klass (Callable[[Statechart], Interpreter]) – a callable
that accepts a statechart and returns an Interpreter

• debug_on_error (bool) – set to True to drop to (i)pdb in case of error.

• behave_parameters (Optional[List[str]]) – additional CLI parameters used by
Behave (see http://behave.readthedocs.io/en/latest/behave.html#command-line-arguments)

Return type int

Returns exit code of behave CLI.

sismic.bdd.map_action(step_text, existing_step_or_steps)
Map new “given”/”when” steps to one or many existing one(s). Parameters are propagated to the original step(s)
as well, as expected.

Examples:

• map_action(‘I open door’, ‘I send event open_door’)

• map_action(‘Event {name} has to be sent’, ‘I send event {name}’)

• map_action(‘I do two things’, [‘First thing to do’, ‘Second thing to do’])

Parameters

• step_text (str) – Text of the new step, without the “given” or “when” keyword.

• existing_step_or_steps (Union[str, List[str]]) – existing step, without the
“given” or “when” keyword. Could be a list of steps.

Return type None

sismic.bdd.map_assertion(step_text, existing_step_or_steps)
Map a new “then” step to one or many existing one(s). Parameters are propagated to the original step(s) as well,
as expected.

map_assertion(‘door is open’, ‘state door open is active’) map_assertion(‘{x} seconds elapsed’, ‘I wait for {x}
seconds’) map_assertion(‘assert two things’, [‘first thing to assert’, ‘second thing to assert’])

Parameters

• step_text (str) – Text of the new step, without the “then” keyword.

• existing_step_or_steps (Union[str, List[str]]) – existing step, without
“then” keyword. Could be a list of steps.

Return type None

66 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
http://behave.readthedocs.io/en/latest/behave.html#command-line-arguments
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None

Sismic Documentation, Release 1.1.2

2.14.2 Module code

class sismic.code.Evaluator(interpreter=None, *, initial_context=None)
Bases: object

Abstract base class for any evaluator.

An instance of this class defines what can be done with piece of codes contained in a statechart (condition,
action, etc.).

Notice that the execute_* methods are called at each step, even if there is no code to execute. This allows the
evaluator to keep track of the states that are entered or exited, and of the transitions that are processed.

Parameters

• interpreter – the interpreter that will use this evaluator, is expected to be an Interpreter
instance

• initial_context (Optional[Mapping[str, Any]]) – an optional dictionary to
populate the context

context
The context of this evaluator. A context is a dict-like mapping between variables and values that is expected
to be exposed when the code is evaluated.

Return type Mapping[str, Any]

evaluate_guard(transition, event=None)
Evaluate the guard for given transition.

Parameters

• transition (Transition) – the considered transition

• event (Optional[Event]) – instance of Event if any

Return type Optional[bool]

Returns truth value of code

evaluate_invariants(obj, event=None)
Evaluate the invariants for given object (either a StateMixin or a Transition) and return a list of conditions
that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

evaluate_postconditions(obj, event=None)
Evaluate the postconditions for given object (either a StateMixin or a Transition) and return a list of con-
ditions that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

2.14. API Reference 67

https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

evaluate_preconditions(obj, event=None)
Evaluate the preconditions for given object (either a StateMixin or a Transition) and return a list of condi-
tions that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

execute_action(transition, event=None)
Execute the action for given transition. This method is called for every transition that is processed, even
those with no action.

Parameters

• transition (Transition) – the considered transition

• event (Optional[Event]) – instance of Event if any

Return type List[Event]

Returns a list of sent events

execute_on_entry(state)
Execute the on entry action for given state. This method is called for every state that is entered, even those
with no on_entry.

Parameters state (StateMixin) – the considered state

Return type List[Event]

Returns a list of sent events

execute_on_exit(state)
Execute the on exit action for given state. This method is called for every state that is exited, even those
with no on_exit.

Parameters state (StateMixin) – the considered state

Return type List[Event]

Returns a list of sent events

execute_statechart(statechart)
Execute the initial code of a statechart. This method is called at the very beginning of the execution.

Parameters statechart (Statechart) – statechart to consider

on_step_starts(event=None)
Called each time the interpreter starts a macro step.

Parameters event (Optional[Event]) – Optional processed event

Return type None

class sismic.code.DummyEvaluator(interpreter=None, *, initial_context=None)
Bases: sismic.code.evaluator.Evaluator

A dummy evaluator that does nothing and evaluates every condition to True.

68 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None

Sismic Documentation, Release 1.1.2

context
The context of this evaluator. A context is a dict-like mapping between variables and values that is expected
to be exposed when the code is evaluated.

evaluate_guard(transition, event=None)
Evaluate the guard for given transition.

Parameters

• transition (Transition) – the considered transition

• event (Optional[Event]) – instance of Event if any

Return type Optional[bool]

Returns truth value of code

evaluate_invariants(obj, event=None)
Evaluate the invariants for given object (either a StateMixin or a Transition) and return a list of conditions
that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

evaluate_postconditions(obj, event=None)
Evaluate the postconditions for given object (either a StateMixin or a Transition) and return a list of con-
ditions that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

evaluate_preconditions(obj, event=None)
Evaluate the preconditions for given object (either a StateMixin or a Transition) and return a list of condi-
tions that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterable[str]

Returns list of unsatisfied conditions

execute_action(transition, event=None)
Execute the action for given transition. This method is called for every transition that is processed, even
those with no action.

Parameters

• transition (Transition) – the considered transition

• event (Optional[Event]) – instance of Event if any

2.14. API Reference 69

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

Return type List[Event]

Returns a list of sent events

execute_on_entry(state)
Execute the on entry action for given state. This method is called for every state that is entered, even those
with no on_entry.

Parameters state (StateMixin) – the considered state

Return type List[Event]

Returns a list of sent events

execute_on_exit(state)
Execute the on exit action for given state. This method is called for every state that is exited, even those
with no on_exit.

Parameters state (StateMixin) – the considered state

Return type List[Event]

Returns a list of sent events

execute_statechart(statechart)
Execute the initial code of a statechart. This method is called at the very beginning of the execution.

Parameters statechart (Statechart) – statechart to consider

on_step_starts(event=None)
Called each time the interpreter starts a macro step.

Parameters event (Optional[Event]) – Optional processed event

Return type None

class sismic.code.PythonEvaluator(interpreter=None, *, initial_context=None)
Bases: sismic.code.evaluator.Evaluator

A code evaluator that understands Python.

Depending on the method that is called, the context can expose additional values:

• On both code execution and code evaluation:

– A time: float value that represents the current time exposed by the interpreter.

– An active(name: str) -> bool Boolean function that takes a state name and return True if and only
if this state is currently active, ie. it is in the active configuration of the Interpreter instance
that makes use of this evaluator.

• On code execution:

– A send(name: str, **kwargs) -> None function that takes an event name and additional keyword
parameters and raises an internal event with it.

– If the code is related to a transition, the event: Event that fires the transition is exposed.

• On guard or contract evaluation:

– If the code is related to a transition, the event: Event that fires the transition is exposed.

• On guard or contract (except preconditions) evaluation:

– An after(sec: float) -> bool Boolean function that returns True if and only if the source state was
entered more than sec seconds ago. The time is evaluated according to Interpreter’s clock.

70 Chapter 2. Features

https://docs.python.org/3.4/library/constants.html#None

Sismic Documentation, Release 1.1.2

– A idle(sec: float) -> bool Boolean function that returns True if and only if the source state did not
fire a transition for more than sec ago. The time is evaluated according to Interpreter’s clock.

• On contract (except preconditions) evaluation:

– A variable __old__ that has an attribute x for every x in the context when either the state was
entered (if the condition involves a state) or the transition was processed (if the condition involves
a transition). The value of __old__.x is a shallow copy of x at that time.

• On contract evaluation:

– A sent(name: str) -> bool function that takes an event name and return True if an event with the
same name was sent during the current step.

– A received(name: str) -> bool function that takes an event name and return True if an event with
the same name is currently processed in this step.

If an exception occurred while executing or evaluating a piece of code, it is propagated by the evaluator.

Parameters

• interpreter – the interpreter that will use this evaluator, is expected to be an Interpreter
instance

• initial_context (Optional[Mapping[str, Any]]) – a dictionary that will be used
as __locals__

context
The context of this evaluator. A context is a dict-like mapping between variables and values that is expected
to be exposed when the code is evaluated.

Return type Mapping[~KT, +VT_co]

evaluate_guard(transition, event=None)
Evaluate the guard for given transition.

Parameters

• transition (Transition) – the considered transition

• event (Optional[Event]) – instance of Event if any

Return type bool

Returns truth value of code

evaluate_invariants(obj, event=None)
Evaluate the invariants for given object (either a StateMixin or a Transition) and return a list of conditions
that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterator[str]

Returns list of unsatisfied conditions

evaluate_postconditions(obj, event=None)
Evaluate the postconditions for given object (either a StateMixin or a Transition) and return a list of con-
ditions that are not satisfied.

Parameters

• obj – the considered state or transition

2.14. API Reference 71

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterator[str]

Returns list of unsatisfied conditions

evaluate_preconditions(obj, event=None)
Evaluate the preconditions for given object (either a StateMixin or a Transition) and return a list of condi-
tions that are not satisfied.

Parameters

• obj – the considered state or transition

• event (Optional[Event]) – an optional Event instance, in the case of a transition

Return type Iterator[str]

Returns list of unsatisfied conditions

execute_action(transition, event=None)
Execute the action for given transition. This method is called for every transition that is processed, even
those with no action.

Parameters

• transition (Transition) – the considered transition

• event (Optional[Event]) – instance of Event if any

Return type List[Event]

Returns a list of sent events

execute_on_entry(state)
Execute the on entry action for given state. This method is called for every state that is entered, even those
with no on_entry.

Parameters state (StateMixin) – the considered state

Return type List[Event]

Returns a list of sent events

execute_on_exit(state)
Execute the on exit action for given state. This method is called for every state that is exited, even those
with no on_exit.

Parameters state (StateMixin) – the considered state

Return type List[Event]

Returns a list of sent events

execute_statechart(statechart)
Execute the initial code of a statechart. This method is called at the very beginning of the execution.

Parameters statechart (Statechart) – statechart to consider

on_step_starts(event=None)
Called each time the interpreter starts a macro step.

Parameters event (Optional[Event]) – Optional processed event

Return type None

72 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None

Sismic Documentation, Release 1.1.2

2.14.3 Module exceptions

exception sismic.exceptions.CodeEvaluationError
Bases: sismic.exceptions.SismicError

Base error for anything related to the evaluation of the code contained in a statechart.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.ConflictingTransitionsError
Bases: sismic.exceptions.ExecutionError

When multiple conflicting (parallel) transitions can be processed at the same time.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.ContractError(configuration=None, step=None, obj=None, as-
sertion=None, context=None)

Bases: sismic.exceptions.SismicError

Base exception for situations in which a contract is not satisfied. All the parameters are optional, and are exposed
to ease debug.

Parameters

• configuration – list of active states

• step – a MicroStep or MacroStep instance.

• obj – the object that is concerned by the assertion

• assertion – the assertion that failed

• context – the context in which the condition failed

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.ExecutionError
Bases: sismic.exceptions.SismicError

Base error for anything related to the execution of a statechart.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.InvariantError(configuration=None, step=None, obj=None,
assertion=None, context=None)

Bases: sismic.exceptions.ContractError

An invariant is not satisfied.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.NonDeterminismError
Bases: sismic.exceptions.ExecutionError

In case of non-determinism.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.14. API Reference 73

Sismic Documentation, Release 1.1.2

exception sismic.exceptions.PostconditionError(configuration=None, step=None,
obj=None, assertion=None, con-
text=None)

Bases: sismic.exceptions.ContractError

A postcondition is not satisfied.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.PreconditionError(configuration=None, step=None,
obj=None, assertion=None, con-
text=None)

Bases: sismic.exceptions.ContractError

A precondition is not satisfied.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.PropertyStatechartError(property_statechart, configura-
tion, step, context)

Bases: sismic.exceptions.SismicError

Raised when a property statechart reaches a final state.

Parameters

• property_statechart – the property statechart that reaches a final state

• configuration – list of active states

• step – latest executed macro step

• context – the context in which the condition failed

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.SismicError
Bases: Exception

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception sismic.exceptions.StatechartError
Bases: sismic.exceptions.SismicError

Base error for anything that is related to a statechart.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.14.4 Module helpers

sismic.helpers.log_trace(interpreter)
Return a list that will be populated by each value returned by the execute_once method of given interpreter.

Parameters interpreter (Interpreter) – an Interpreter instance

Return type List[MacroStep]

Returns a list of MacroStep

74 Chapter 2. Features

https://docs.python.org/3.4/library/exceptions.html#Exception

Sismic Documentation, Release 1.1.2

sismic.helpers.run_in_background(interpreter, delay=0.05, callback=None)
Run given interpreter in background. The time is updated according to time.time() - starttime. The interpreter is
ran until it reaches a final configuration. You can manually stop the thread using the added stop of the returned
Thread object. This is for convenience only and should be avoided, because a call to stop puts the interpreter in
an empty (and thus final) configuration, without properly leaving the active states.

Parameters

• interpreter (Interpreter) – an interpreter

• delay (float) – delay between each call to execute()

• callback (Optional[Callable[[List[MacroStep]], Any]]) – a function that ac-
cepts the result of execute.

Return type Thread

Returns started thread (instance of threading.Thread)

sismic.helpers.coverage_from_trace(trace)
Given a list of macro steps considered as the trace of a statechart execution, return Counter objects that counts
the states that were entered, the states that were exited and the transitions that were processed.

Parameters trace (List[MacroStep]) – A list of macro steps

Return type Mapping[str, Counter]

Returns A dict whose keys are “entered states”, “exited states” and “processed transitions” and
whose values are Counter object.

2.14.5 Module interpreter

class sismic.interpreter.Interpreter(statechart, *, evaluator_klass=<class ’sis-
mic.code.python.PythonEvaluator’>, ini-
tial_context=None, ignore_contract=False)

Bases: object

A discrete interpreter that executes a statechart according to a semantic close to SCXML.

Parameters

• statechart (Statechart) – statechart to interpret

• evaluator_klass (Callable[. . . , Evaluator]) – An optional callable (eg. a class)
that takes an interpreter and an optional initial context as input and return an Evaluator
instance that will be used to initialize the interpreter. By default, the PythonEvaluator class
will be used.

• initial_context (Optional[Mapping[str, Any]]) – an optional initial context
that will be provided to the evaluator. By default, an empty context is provided

• ignore_contract (bool) – set to True to ignore contract checking during the execu-
tion.

bind(interpreter_or_callable)
Bind an interpreter or a callable to the current interpreter. Each time an internal event is sent by this
interpreter, any bound object will be called with the same event. If interpreter_or_callable is an Interpreter
instance, its queue method is called. This is, if i1 and i2 are interpreters, i1.bind(i2) is equivalent to
i1.bind(i2.queue).

Parameters interpreter_or_callable (Union[Interpreter,
Callable[[Event], Any]]) – interpreter or callable to bind

2.14. API Reference 75

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/threading.html#threading.Thread
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/collections.html#collections.Counter
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool

Sismic Documentation, Release 1.1.2

Return type None

Returns self so it can be chained

bind_property_statechart(statechart_or_interpreter)
Bind a property statechart to the current interpreter. A property statechart receives meta-events from the
current interpreter depending on what happens:

• step started: when a macro step starts.

• step ended: when a macro step ends.

• event consumed: when an event is consumed. The consumed event is exposed through the event
attribute.

• event sent: when an event is sent. The sent event is exposed through the event attribute.

• state exited: when a state is exited. The exited state is exposed through the state attribute.

• state entered: when a state is entered. The entered state is exposed through the state attribute.

• transition processed: when a transition is processed. The source state, target state and the event are
exposed respectively through the source, target and event attribute.

The internal clock of all property statecharts will be synced with the one of the current interpreter. As soon
as a property statechart reaches a final state, a PropertyStatechartError will be raised, implicitly
meaning that the property expressed by the corresponding property statechart is not satisfied.

Parameters statechart_or_interpreter (Union[Statechart, Interpreter])
– A property statechart or an interpreter of a property statechart.

Return type None

configuration
List of active states names, ordered by depth. Ties are broken according to the lexicographic order on the
state name.

Return type List[str]

context
The context of execution.

Return type Mapping[str, Any]

execute(max_steps=-1)
Repeatedly calls execute_once and return a list containing the returned values of execute_once.

Notice that this does NOT return an iterator but computes the whole list first before returning it.

Parameters max_steps (int) – An upper bound on the number steps that are computed and
returned. Default is -1, no limit. Set to a positive integer to avoid infinite loops in the
statechart execution.

Return type List[MacroStep]

Returns A list of MacroStep instances

execute_once()
Select transitions that can be fired based on available queued events, process them and stabilize the inter-
preter. When multiple transitions are selected, they are atomically processed: states are exited, transition
is processed, states are entered, statechart is stabilized and only after that, the next transition is processed.

Return type Optional[MacroStep]

Returns a macro step or None if nothing happened

76 Chapter 2. Features

https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int

Sismic Documentation, Release 1.1.2

final
Boolean indicating whether this interpreter is in a final configuration.

Return type bool

queue(event_or_name, *events_or_names)
Queue one or more events to the interpreter external queue.

Parameters

• event_or_name (Union[str, Event]) – an Event instance, or the name of an event.

• events_or_names (Union[str, Event]) – additional Event instances, or names of
events.

Return type Interpreter

Returns self so it can be chained.

statechart
Embedded statechart

Return type Statechart

time
Time value (in seconds) for the internal clock

Return type float

class sismic.interpreter.Event(name, **additional_parameters)
Bases: object

Simple event with a name and (optionally) some data. Unless the attribute already exists, each key from data is
exposed as an attribute of this class.

The list of defined attributes can be obtained using dir(event).

Parameters

• name (str) – Name of the event

• data – additional data (mapping, dict-like)

class sismic.interpreter.InternalEvent(name, **additional_parameters)
Bases: sismic.model.events.Event

Subclass of Event that represents an internal event.

class sismic.interpreter.MetaEvent(name, **additional_parameters)
Bases: sismic.model.events.Event

Subclass of Event that represents a MetaEvent, as used in property statecharts.

2.14.6 Module io

sismic.io.import_from_yaml(text=None, filepath=None, *, ignore_schema=False, ig-
nore_validation=False)

Import a statechart from a YAML representation (first argument) or a YAML file (filepath argument).

Unless specified, the structure contained in the YAML is validated against a predefined schema (see sis-
mic.io.SCHEMA), and the resulting statechart is validated using its validate() method.

Parameters

2.14. API Reference 77

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

• text (Optional[Iterable[str]]) – A YAML text. If not provided, filepath argument
has to be provided.

• filepath (Optional[str]) – A path to a YAML file.

• ignore_schema (bool) – set to True to disable yaml validation.

• ignore_validation (bool) – set to True to disable statechart validation.

Return type Statechart

Returns a Statechart instance

sismic.io.export_to_yaml(statechart, filepath=None)
Export given Statechart instance to YAML. Its YAML representation is returned by this function. Automatically
save the output to filepath, if provided.

Parameters

• statechart (Statechart) – statechart to export

• filepath (Optional[str]) – save output to given filepath, if provided

Return type str

Returns A textual YAML representation

sismic.io.export_to_plantuml(statechart, filepath=None, *, based_on=None,
based_on_filepath=None, statechart_name=True, stat-
echart_description=False, statechart_preamble=False,
state_contracts=False, state_action=True, transi-
tion_contracts=False, transition_action=True)

Export given statechart to plantUML (see http://plantuml/plantuml). If a filepath is provided, also save the
output to this file.

Due to the way statecharts are representing, and due to the presence of features that are specific to Sismic, the
resulting statechart representation does not include all the informations. For example, final states and history
states won’t have name, actions and contracts.

If a previously exported representation for the statechart is provided, either as text (based_on parameter) or as a
filepath (based_on_filepath parameter), it will attempt to reuse the modifications made to the transitions (their
direction and length).

Parameters

• statechart (Statechart) – statechart to export

• filepath (Optional[str]) – save output to given filepath, if provided

• based_on (Optional[str]) – existing representation of the statechart in PlantUML

• based_on_filepath (Optional[str]) – filepath to an existing representation of the
statechart in PlantUML

• statechart_name (bool) – include the name of the statechart

• statechart_description (bool) – include the description of the statechart

• statechart_preamble (bool) – include the preamble of the statechart

• state_contracts (bool) – include state contracts

• state_action (bool) – include state actions (on entry, on exit and internal transitions)

• transition_contracts (bool) – include transition contracts

• transition_action (bool) – include actions on transition

78 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
http://plantuml/plantuml
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Sismic Documentation, Release 1.1.2

Return type str

Returns textual representation using plantuml

2.14.7 Module model

class sismic.model.ActionStateMixin(on_entry=None, on_exit=None)
Bases: object

State that can define actions on entry and on exit.

Parameters

• on_entry (Optional[str]) – code to execute when state is entered

• on_exit (Optional[str]) – code to execute when state is exited

class sismic.model.BasicState(name, on_entry=None, on_exit=None)
Bases: sismic.model.elements.ContractMixin, sismic.model.elements.
StateMixin, sismic.model.elements.ActionStateMixin, sismic.model.elements.
TransitionStateMixin

A basic state, with a name, transitions, actions, etc. but no child state.

Parameters

• name (str) – name of this state

• on_entry (Optional[str]) – code to execute when state is entered

• on_exit (Optional[str]) – code to execute when state is exited

class sismic.model.CompositeStateMixin
Bases: object

Composite state can have children states.

class sismic.model.CompoundState(name, initial=None, on_entry=None, on_exit=None)
Bases: sismic.model.elements.ContractMixin, sismic.model.elements.
StateMixin, sismic.model.elements.ActionStateMixin, sismic.model.elements.
TransitionStateMixin, sismic.model.elements.CompositeStateMixin

Compound states must have children states.

Parameters

• name (str) – name of this state

• initial (Optional[str]) – name of the initial state

• on_entry (Optional[str]) – code to execute when state is entered

• on_exit (Optional[str]) – code to execute when state is exited

class sismic.model.ContractMixin
Bases: object

Mixin with a contract: preconditions, postconditions and invariants.

class sismic.model.DeepHistoryState(name, on_entry=None, on_exit=None, memory=None)
Bases: sismic.model.elements.ContractMixin, sismic.model.elements.
StateMixin, sismic.model.elements.ActionStateMixin, sismic.model.elements.
HistoryStateMixin

A deep history state resumes the execution of its parent, and of every nested active states in its parent.

2.14. API Reference 79

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object

Sismic Documentation, Release 1.1.2

Parameters

• name (str) – name of this state

• on_entry (Optional[str]) – code to execute when state is entered

• on_exit (Optional[str]) – code to execute when state is exited

• memory (Optional[str]) – name of the initial state

class sismic.model.Event(name, **additional_parameters)
Bases: object

Simple event with a name and (optionally) some data. Unless the attribute already exists, each key from data is
exposed as an attribute of this class.

The list of defined attributes can be obtained using dir(event).

Parameters

• name (str) – Name of the event

• data – additional data (mapping, dict-like)

class sismic.model.FinalState(name, on_entry=None, on_exit=None)
Bases: sismic.model.elements.ContractMixin, sismic.model.elements.StateMixin,
sismic.model.elements.ActionStateMixin

Final state has NO transition and is used to detect state machine termination.

Parameters

• name (str) – name of this state

• on_entry (Optional[str]) – code to execute when state is entered

• on_exit (Optional[str]) – code to execute when state is exited

class sismic.model.HistoryStateMixin(memory=None)
Bases: object

History state has a memory that can be resumed.

Parameters memory (Optional[str]) – name of the initial state

class sismic.model.InternalEvent(name, **additional_parameters)
Bases: sismic.model.events.Event

Subclass of Event that represents an internal event.

class sismic.model.MacroStep(time, steps)
Bases: object

A macro step is a list of micro steps.

Parameters

• time (float) – the time at which this step was executed

• steps (List[MicroStep]) – a list of MicroStep instances

entered_states
List of the states names that were entered.

Return type List[str]

event
Event (or None) that was consumed.

80 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

Return type Optional[Event]

exited_states
List of the states names that were exited.

Return type List[str]

sent_events
List of events that were sent during this step.

Return type List[Event]

steps
List of micro steps

Return type List[MicroStep]

time
Time at which this step was executed.

Return type float

transitions
A (possibly empty) list of transitions that were triggered.

Return type List[Transition]

class sismic.model.MetaEvent(name, **additional_parameters)
Bases: sismic.model.events.Event

Subclass of Event that represents a MetaEvent, as used in property statecharts.

class sismic.model.MicroStep(event=None, transition=None, entered_states=None, ex-
ited_states=None, sent_events=None)

Bases: object

Create a micro step.

A step consider event, takes a transition and results in a list of entered_states and a list of exited_states. Order
in the two lists is REALLY important!

Parameters

• event (Optional[Event]) – Event or None in case of eventless transition

• transition (Optional[Transition]) – a Transition or None if no processed tran-
sition

• entered_states (Optional[List[str]]) – possibly empty list of entered states

• exited_states (Optional[List[str]]) – possibly empty list of exited states

• sent_events (Optional[List[Event]]) – a possibly empty list of events that are
sent during the step

class sismic.model.OrthogonalState(name, on_entry=None, on_exit=None)
Bases: sismic.model.elements.ContractMixin, sismic.model.elements.
StateMixin, sismic.model.elements.ActionStateMixin, sismic.model.elements.
TransitionStateMixin, sismic.model.elements.CompositeStateMixin

Orthogonal states run their children simultaneously.

Parameters

• name (str) – name of this state

• on_entry (Optional[str]) – code to execute when state is entered

2.14. API Reference 81

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

• on_exit (Optional[str]) – code to execute when state is exited

class sismic.model.ShallowHistoryState(name, on_entry=None, on_exit=None, mem-
ory=None)

Bases: sismic.model.elements.ContractMixin, sismic.model.elements.
StateMixin, sismic.model.elements.ActionStateMixin, sismic.model.elements.
HistoryStateMixin

A shallow history state resumes the execution of its parent. It activates the latest visited state of its parent.

Parameters

• name (str) – name of this state

• on_entry (Optional[str]) – code to execute when state is entered

• on_exit (Optional[str]) – code to execute when state is exited

• memory (Optional[str]) – name of the initial state

class sismic.model.StateMixin(name)
Bases: object

State element with a name.

Parameters name (str) – name of the state

class sismic.model.Statechart(name, description=None, preamble=None)
Bases: object

Python structure for a statechart

Parameters

• name (str) – Name of this statechart

• description (Optional[str]) – optional description

• preamble (Optional[str]) – code to execute to bootstrap the statechart

add_state(state, parent)
Add given state (a StateMixin instance) on given parent (its name as an str). If given state should be use as
a root state, set parent to None.

Parameters

• state (StateMixin) – state to add

• parent (Optional[str]) – name of its parent, or None

Raises StatechartError –

Return type None

add_transition(transition)
Register given transition and register it on the source state

Parameters transition (Transition) – transition to add

Raises StatechartError –

Return type None

ancestors_for(name)
Return an ordered list of ancestors for the given state. Ancestors are ordered by decreasing depth.

Parameters name (str) – name of the state

Return type List[str]

82 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

Returns state’s ancestors

Raises StatechartError – if state does not exist

children_for(name)
Return the names of the children of the given state.

Parameters name (str) – a state name

Return type List[str]

Returns a (possibly empty) list of children

Raises StatechartError – if state does not exist

copy_from_statechart(statechart, *, source, replace, renaming_func=<function State-
chart.<lambda>>)

Copy (a part of) given statechart into current one.

Copy source state, all its descendants and all involved transitions from statechart into current statechart.
The source state will override replace state (but will be renamed to replace), and all its descendants in
statechart will be copied into current statechart. All the transitions that are involved in the process must
be fully contained in source state (ie. for all transition T: S->T, if S (resp. T) is a descendant-or-self of
source, then T (resp. S) must be a descendant-or-self of source).

If necessary, callable renaming_func can be provided. This function should accept a (state) name and
return a (new state) name. Use renaming_func to avoid conflicting names in target statechart.

Parameters

• statechart (Statechart) – Source statechart from which states will be copied.

• source (str) – Name of the source state.

• replace (str) – Name of the target state. Should refer to a StateMixin with no child.

• renaming_func (Callable[[str], str]) – Optional callable to resolve conflicting
names.

Return type None

depth_for(name)
Return the depth of given state (1-indexed).

Parameters name (str) – name of the state

Return type int

Returns state depth

Raises StatechartError – if state does not exist

descendants_for(name)
Return an ordered list of descendants for the given state. Descendants are ordered by increasing depth.

Parameters name (str) – name of the state

Return type List[str]

Returns state’s descendants

Raises StatechartError – if state does not exist

events_for(name_or_names=None)
Return a list containing the name of every event that guards a transition in this statechart.

If name_or_names is specified, it must be the name of a state (or a list of such names). Only transitions
that have a source state from this list will be considered. By default, the list contains all the states.

2.14. API Reference 83

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

Parameters name_or_names (Union[str, List[str], None]) – None, a state name or a
list of state names.

Return type List[str]

Returns A list of event names

leaf_for(names)
Return the leaves of names.

Considering the list of states names in names, return a list containing each element of names such that this
element has no descendant in names.

Parameters names (Iterable[str]) – a list of state names

Return type List[str]

Returns the names of the leaves in names

Raises StatechartError – if a state does not exist

least_common_ancestor(name_first, name_second)
Return the deepest common ancestor for s1 and s2, or None if there is no common ancestor except root
(top-level) state.

Parameters

• name_first (str) – name of first state

• name_second (str) – name of second state

Return type Optional[str]

Returns name of deepest common ancestor or None

Raises StatechartError – if state does not exist

move_state(name, new_parent)
Move given state (and its children) such that its new parent is new_parent.

Notice that a state cannot be moved inside itself or inside one of its descendants. If the state to move is the
target of an initial or memory property of its parent, this property will be set to None. The same occurs if
given state is an history state.

Parameters

• name (str) – name of the state to move

• new_parent (str) – name of the new parent

Return type None

parent_for(name)
Return the name of the parent of given state name.

Parameters name (str) – a state name

Return type str

Returns its parent name, or None.

Raises StatechartError – if state does not exist

preamble
Preamble code

84 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

remove_state(name)
Remove given state.

The transitions that involve this state will also be removed. If the state is the target of an initial or memory
property, their value will be set to None. If the state has children, they will be removed too.

Parameters name (str) – name of a state

Raises StatechartError –

Return type None

remove_transition(transition)
Remove given transitions.

Parameters transition (Transition) – a Transition instance

Raises StatechartError – if transition is not registered

Return type None

rename_state(old_name, new_name)
Change state name, and adapt transitions, initial state, memory, etc.

Parameters

• old_name (str) – old name of the state

• new_name (str) – new name of the state

Return type None

root
Root state name

Return type Optional[str]

rotate_transition(transition, new_source=”, new_target=”)
Rotate given transition.

You MUST specify either new_source (a valid state name) or new_target (a valid state name or None) or
both.

Parameters

• transition (Transition) – a Transition instance

• new_source (str) – a state name

• new_target (Optional[str]) – a state name or None

Raises StatechartError – if given transition or a given state does not exist.

Return type None

state_for(name)
Return the state instance that has given name.

Parameters name (str) – a state name

Return type StateMixin

Returns a StateMixin that has the same name or None

Raises StatechartError – if state does not exist

states
List of state names in lexicographic order.

2.14. API Reference 85

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/constants.html#None
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

transitions
List of available transitions

transitions_from(source)
Return the list of transitions whose source is given name.

Parameters source (str) – name of source state

Return type List[Transition]

Returns a list of Transition instances

Raises StatechartError – if state does not exist

transitions_to(target)
Return the list of transitions whose target is given name. Internal transitions are returned too.

Parameters target (str) – name of target state

Return type List[Transition]

Returns a list of Transition instances

Raises StatechartError – if state does not exist

transitions_with(event)
Return the list of transitions that can be triggered by given event name.

Parameters event (str) – name of the event

Return type List[Transition]

Returns a list of Transition instances

validate()
Checks that every CompoundState’s initial state refer to one of its children Checks that every HistoryS-
tateMixin’s memory refer to one of its parent’s children

Return type bool

Returns True

Raises StatechartError –

class sismic.model.Transition(source, target=None, event=None, guard=None, action=None)
Bases: sismic.model.elements.ContractMixin

Represent a transition from a source state to a target state.

A transition can be eventless (no event) or internal (no target). A condition (code as string) can be specified as
a guard.

Parameters

• source (str) – name of the source state

• target (Optional[str]) – name of the target state (if transition is not internal)

• event (Optional[str]) – event name (if any)

• guard (Optional[str]) – condition as code (if any)

• action (Optional[str]) – action as code (if any)

eventless
Boolean indicating whether this transition is an eventless transition.

86 Chapter 2. Features

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str

Sismic Documentation, Release 1.1.2

internal
Boolean indicating whether this transition is an internal transition.

class sismic.model.TransitionStateMixin
Bases: object

A simple state can host transitions

2.14. API Reference 87

https://docs.python.org/3.4/library/functions.html#object

Sismic Documentation, Release 1.1.2

88 Chapter 2. Features

CHAPTER 3

Credits

The Sismic library for Python is mainly developed by Alexandre Decan at the University of Mons with the help of
many contributors.

Sismic is released publicly under the GNU Lesser General Public Licence version 3.0 (LGPLv3).

The source code is available on GitHub: https://github.com/AlexandreDecan/sismic

Use GitHub’s integrated services to contribute suggestions and feature requests for this library or to report bugs.

You can cite Sismic using:

@software{sismic,
author = {{Alexandre Decan}},
title = {Sismic Interactive Statechart Model Interpreter and Checker},
url = {https://github.com/AlexandreDecan/sismic},

}

89

http://www.umons.ac.be
http://sismic.readthedocs.io/en/master/authors.html
http://www.gnu.org/licenses/lgpl-3.0.html
https://github.com/AlexandreDecan/sismic

Sismic Documentation, Release 1.1.2

90 Chapter 3. Credits

Python Module Index

s
sismic.bdd, 65
sismic.code, 67
sismic.exceptions, 73
sismic.helpers, 74
sismic.interpreter, 75
sismic.io, 77
sismic.model, 79

91

Sismic Documentation, Release 1.1.2

92 Python Module Index

Index

Symbols
_apply_step() (sismic.interpreter.Interpreter method), 20
_create_stabilization_step() (sismic.interpreter.Interpreter

method), 19
_create_steps() (sismic.interpreter.Interpreter method), 19
_filter_transitions() (sismic.interpreter.Interpreter

method), 19
_select_event() (sismic.interpreter.Interpreter method), 18
_select_transitions() (sismic.interpreter.Interpreter

method), 19
_sort_transitions() (sismic.interpreter.Interpreter

method), 19

A
ActionStateMixin (class in sismic.model), 79
add_state() (sismic.model.Statechart method), 82
add_transition() (sismic.model.Statechart method), 82
ancestors_for() (sismic.model.Statechart method), 82

B
BasicState (class in sismic.model), 79
bind() (sismic.interpreter.Interpreter method), 75
bind_property_statechart() (sismic.interpreter.Interpreter

method), 76

C
children_for() (sismic.model.Statechart method), 83
CodeEvaluationError, 73
CompositeStateMixin (class in sismic.model), 79
CompoundState (class in sismic.model), 79
configuration (sismic.interpreter.Interpreter attribute), 76
ConflictingTransitionsError, 73
context (sismic.code.DummyEvaluator attribute), 68
context (sismic.code.Evaluator attribute), 67
context (sismic.code.PythonEvaluator attribute), 71
context (sismic.interpreter.Interpreter attribute), 76
ContractError, 73
ContractMixin (class in sismic.model), 79

copy_from_statechart() (sismic.model.Statechart
method), 83

coverage_from_trace() (in module sismic.helpers), 75

D
DeepHistoryState (class in sismic.model), 79
depth_for() (sismic.model.Statechart method), 83
descendants_for() (sismic.model.Statechart method), 83
DummyEvaluator (class in sismic.code), 68

E
entered_states (sismic.model.MacroStep attribute), 80
evaluate_guard() (sismic.code.DummyEvaluator

method), 69
evaluate_guard() (sismic.code.Evaluator method), 67
evaluate_guard() (sismic.code.PythonEvaluator method),

71
evaluate_invariants() (sismic.code.DummyEvaluator

method), 69
evaluate_invariants() (sismic.code.Evaluator method), 67
evaluate_invariants() (sismic.code.PythonEvaluator

method), 71
evaluate_postconditions() (sismic.code.DummyEvaluator

method), 69
evaluate_postconditions() (sismic.code.Evaluator

method), 67
evaluate_postconditions() (sismic.code.PythonEvaluator

method), 71
evaluate_preconditions() (sismic.code.DummyEvaluator

method), 69
evaluate_preconditions() (sismic.code.Evaluator

method), 67
evaluate_preconditions() (sismic.code.PythonEvaluator

method), 72
Evaluator (class in sismic.code), 67
Event (class in sismic.interpreter), 77
Event (class in sismic.model), 80
event (sismic.model.MacroStep attribute), 80
eventless (sismic.model.Transition attribute), 86

93

Sismic Documentation, Release 1.1.2

events_for() (sismic.model.Statechart method), 83
execute() (sismic.interpreter.Interpreter method), 76
execute_action() (sismic.code.DummyEvaluator

method), 69
execute_action() (sismic.code.Evaluator method), 68
execute_action() (sismic.code.PythonEvaluator method),

72
execute_bdd() (in module sismic.bdd), 65
execute_on_entry() (sismic.code.DummyEvaluator

method), 70
execute_on_entry() (sismic.code.Evaluator method), 68
execute_on_entry() (sismic.code.PythonEvaluator

method), 72
execute_on_exit() (sismic.code.DummyEvaluator

method), 70
execute_on_exit() (sismic.code.Evaluator method), 68
execute_on_exit() (sismic.code.PythonEvaluator

method), 72
execute_once() (sismic.interpreter.Interpreter method), 76
execute_statechart() (sismic.code.DummyEvaluator

method), 70
execute_statechart() (sismic.code.Evaluator method), 68
execute_statechart() (sismic.code.PythonEvaluator

method), 72
ExecutionError, 73
exited_states (sismic.model.MacroStep attribute), 81
export_to_plantuml() (in module sismic.io), 78
export_to_yaml() (in module sismic.io), 78

F
final (sismic.interpreter.Interpreter attribute), 76
FinalState (class in sismic.model), 80

H
HistoryStateMixin (class in sismic.model), 80

I
import_from_yaml() (in module sismic.io), 77
internal (sismic.model.Transition attribute), 86
InternalEvent (class in sismic.interpreter), 77
InternalEvent (class in sismic.model), 80
Interpreter (class in sismic.interpreter), 75
InvariantError, 73

L
leaf_for() (sismic.model.Statechart method), 84
least_common_ancestor() (sismic.model.Statechart

method), 84
log_trace() (in module sismic.helpers), 74

M
MacroStep (class in sismic.model), 80
map_action() (in module sismic.bdd), 66

map_assertion() (in module sismic.bdd), 66
MetaEvent (class in sismic.interpreter), 77
MetaEvent (class in sismic.model), 81
MicroStep (class in sismic.model), 81
move_state() (sismic.model.Statechart method), 84

N
NonDeterminismError, 73

O
on_step_starts() (sismic.code.DummyEvaluator method),

70
on_step_starts() (sismic.code.Evaluator method), 68
on_step_starts() (sismic.code.PythonEvaluator method),

72
OrthogonalState (class in sismic.model), 81

P
parent_for() (sismic.model.Statechart method), 84
PostconditionError, 73
preamble (sismic.model.Statechart attribute), 84
PreconditionError, 74
PropertyStatechartError, 74
PythonEvaluator (class in sismic.code), 70

Q
queue() (sismic.interpreter.Interpreter method), 77

R
remove_state() (sismic.model.Statechart method), 84
remove_transition() (sismic.model.Statechart method), 85
rename_state() (sismic.model.Statechart method), 85
root (sismic.model.Statechart attribute), 85
rotate_transition() (sismic.model.Statechart method), 85
run_in_background() (in module sismic.helpers), 74

S
sent_events (sismic.model.MacroStep attribute), 81
ShallowHistoryState (class in sismic.model), 82
sismic.bdd (module), 65
sismic.code (module), 67
sismic.exceptions (module), 73
sismic.helpers (module), 74
sismic.interpreter (module), 75
sismic.io (module), 77
sismic.model (module), 79
SismicError, 74
state_for() (sismic.model.Statechart method), 85
Statechart (class in sismic.model), 82
statechart (sismic.interpreter.Interpreter attribute), 77
StatechartError, 74
StateMixin (class in sismic.model), 82
states (sismic.model.Statechart attribute), 85

94 Index

Sismic Documentation, Release 1.1.2

steps (sismic.model.MacroStep attribute), 81

T
time (sismic.interpreter.Interpreter attribute), 77
time (sismic.model.MacroStep attribute), 81
Transition (class in sismic.model), 86
transitions (sismic.model.MacroStep attribute), 81
transitions (sismic.model.Statechart attribute), 85
transitions_from() (sismic.model.Statechart method), 86
transitions_to() (sismic.model.Statechart method), 86
transitions_with() (sismic.model.Statechart method), 86
TransitionStateMixin (class in sismic.model), 87

V
validate() (sismic.model.Statechart method), 86

W
with_traceback() (sismic.exceptions.CodeEvaluationError

method), 73
with_traceback() (sismic.exceptions.ConflictingTransitionsError

method), 73
with_traceback() (sismic.exceptions.ContractError

method), 73
with_traceback() (sismic.exceptions.ExecutionError

method), 73
with_traceback() (sismic.exceptions.InvariantError

method), 73
with_traceback() (sismic.exceptions.NonDeterminismError

method), 73
with_traceback() (sismic.exceptions.PostconditionError

method), 74
with_traceback() (sismic.exceptions.PreconditionError

method), 74
with_traceback() (sismic.exceptions.PropertyStatechartError

method), 74
with_traceback() (sismic.exceptions.SismicError

method), 74
with_traceback() (sismic.exceptions.StatechartError

method), 74

Index 95

	About
	Features
	Installation
	Statecharts definition
	Statecharts execution
	Include code in statecharts
	Design by Contract for statecharts
	Monitoring properties
	Behavior-Driven Development
	Dealing with time
	Integrate statecharts into your code
	Communication between statecharts
	Extensions for Sismic
	Credits
	Changelog
	API Reference

	Credits
	Python Module Index

